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Overview

• Special relativity: simultaneity, length

measurement, accelerated observers

• Hypothesis of Locality and its problems

• Electrodynamics and accelerated observers

• Equivalence principle and gauge theories of gravity

• Teleparallel Theories
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Main topics

1. Problems with traditional treatment of accelerated

observers, using the Hypothesis of Locality: length

measurements

2. Alternative nonlocal approaches in

electrodynamics

3. Alternative to traditional application of Principle

of Equivalence: teleparallel theories
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SR: Simultaneity and Lengths

Event: single location/position, single instant in time.

Position of event: coordinate label on an indefinitely

extended rigid ruler.

Time of event: Reading on a clock located at position

of event

Inertial observers can use synchronized clocks: They

can correct for travel time of a signal. Prior knowledge

needed: Distance between source of signal and

observer.

Time ordering/simultaneity depends on relative

velocity between observers, not on their positions.
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Length in a reference frame := difference between

coordinate positions at the same time.

Different inertial frames (with relative velocity):

different coordinate positions, since “same time”

different ⇒ Lorentz-Fitzgerald contraction:

l′ =

√
1 − v2

c2
l =

1

γ
l0 .

If no global reference frame: synchronized clocks not

available. Operational length definition: Observer 1

sends signal to (unintelligent) observer 2 who sends

signal immediately back. L := 1
2c∆t .

Assumption: c constant in all reference frames.
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Acceleration lengths

Orthonormal frame field λµ
(α)(τ). Covariant derivative

of the frame field:

Dλµ
(α)

Dτ
= Φα

β(τ)λµ
(β) .

For vanishing non-metricity (using orthonormality):

Φαβ(τ) = −Φβα(τ). Therefore:

Φαβ :=




0

−~g/c

∣∣∣∣∣∣∣∣∣∣∣∣

~g/c

~Ω
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λµ
(2)

x̄µ(τ1)

λµ
(3)

x̄µ(τ0)

x̄µ(τ2)

λµ
(1)

λµ
(0)

xµ(τ0)

New accelerated coordi-

nates using only position

and basis frame field:

xµ(τ) = x̄µ(τ) + Xiλµ
(i)(τ)

Metric for accelerated observer in Minkowski spacetime:

ds2 = oµν dxµ dxν =



(

1 +
~g · ~X

c2

)2

−
(

~Ω × ~X

c

)2

 (dx0)2

− 2

(
~Ω × ~X

c

)
· d ~Xdx0 − δij dXi dXj .
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Scalar invariants of antisymmetric tensor Φαβ:

1

2c2
ΦαβΦαβ = −g2

c4
+

Ω2

c2
,

1

4c2
Φ∗

αβΦαβ =
~g

c2
·
~Ω

c
.

Proper acceleration lengths L: c2

g
and c

Ω .

Earth surface:

c2

g
=

(3 · 108 m
s )2

9.8m
s2

≈ 1 ly = 9.46 · 1015 m

c

Ω
=

3 · 108 m
s

7.272 · 10−5 s−1
= 4.1253 · 1012 m ≈ 27.5AU
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Hypothesis of Locality

Accelerated observers measure the same

physical results as a standard observer that

has the same position and velocity at the

time of measurement.

Clock hypothesis: Restricted hypothesis of locality for

time measurements only.

Hypothesis ingrained in Newton’s theory, a theory for

point particles:

All forces and movements are determined by a second

order equation of motion. It determines the state of a

particle (~x,~v) once the initial condition is specified.
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• Waves: ω′ = γ
(
ω − ~v · ~k

)
.

For accelerated observers: v changes.

Measurement of frequency only possible, if

velocity doesn’t change too much over a period of

the wave: T
∣∣∣d~v

dt

∣∣∣� v .

With λ = cT , we get λ
c
a � v < c, and thus λ � c2

a
.

• Charged particles: Accelerated particles radiate.

Described by Abraham-Lorentz-Dirac equation

m
d2~x

dt2
− 2

3

q2

c3

d3~x

dt3
+ · · · = ~F

• Quantum mechanical particles: have Compton

and de Broglie wavelengths associated with them.
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Distance measurements:

Two observers, a distance l

apart, with identical acceler-

ation profiles

p1

l
profile

acceleration
identical

p2

– Distance in initial inertial frame: l.

– Distance in momentarily comoving frame:

l′ = 1r
1−

v2(t)

c2

l = γ(t)l

– Distance in accelerating frame with P1 in origin:
L
l′

= 1 − 1
2β2γε + O(ε2) with ε = l

c2

g

.

– Distance in accelerating frame with P2 in origin:
L′

l′
= 1 + 1

2β2γ2ε + O(ε2).
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– Distance according to operational definition

for P1:
L∗

l′
= 1 − 1

2
γε(1 + β2) + O(ε2)

.

– Distance according to operational definition

for P2:

L′∗

l′
= 1 − 1

2
γε(1 − β2) + O(ε2)

= 1 − 1

2

ε

γ
+ O(ε2) .
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Unruh effect, quantum invariance

Accelerated reference frames are local in nature.

Unruh effect: predicts that accelerated observers see

thermal spectrum of particles. The effect is derived by

Bogoljubov transformations between nonlocal accelerated

and inertial frames.

Circularly polarized electromagnetic wave, frequency ω.

Uniformly rotating observer with angular velocity Ω sees

(upper sign: RCP):

ω∗ = γ(ω ∓ Ω) = γω

(
1 ∓ Ω

ω

)
,

Ω

ω
=

λ/2π

c/Ω
=

λ/2π

L .

We can choose an angular velocity Ω so that ω∗ is zero, i.e.

electromagnetic field constant in time. The photon of the

inertial frame disappears in the uniformly rotating frame.
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Alternatives to Hypothesis of Locality

in EM theory

1. Mashhoon model: The field that an accelerated

observer actually measures depends linearly, but

nonlocally on inertial measurements:

Fαβ(τ) = Fαβ(τ) +

τ∫

τ0

Kαβ
γδ(τ, τ ′) Fγδ(τ

′) dτ ′ ,

Kernel K is expected to depend on the

acceleration of the observer.

Investigations: Determining Maxwell’s equations

for the accelerated observer (they are

integro-differential equations).
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If K is of convolution type: Volterra calculus can

be used.

Concrete example for a uniformly rotating

observer:

E = Ê +

τ∫

τ0

[
ω × Ê(τ ′) − a

c
× B̂(τ ′)

]
dτ ′ ,

B = B̂ +

τ∫

τ0

[
a

c
× Ê(τ ′) + ω × B̂(τ ′)

]
dτ ′ ,

with a = (−cβγ2 Ω, 0, 0) and ω = (0, 0, γ2 Ω).
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2. Charge & Flux model: The constitutive relation

is linear, but nonlocal:

Hαβ(τ, ξ) =
√
−g gαµ gβν

∫
Kµν

ρσ(τ, τ ′, ξ)Fρσ(τ ′, ξ) dτ ′ ,

ξ depends on the medium. The kernel will be

acceleration-dependent, if we use the connection

of the accelerated observer:

Hαβ(τ) =
√
−g gαµ gβν

[
Fµν(τ)

− c

τ∫

τ0

[Γ0µ
ρ(τ − τ ′)Fρν(τ

′) + Γ0ν
ρ(τ − τ ′)Fµρ(τ

′)] dτ ′
]
,
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Concrete example for a uniformly rotating

observer:

D = E +

∫ τ

τ0

[
ω(τ − τ ′) × E(τ ′) − a(τ − τ ′)

c
× B(τ ′)

]
dτ ′ ,

H = B +

∫ τ

τ0

[
ω(τ − τ ′) × B(τ ′) +

a(τ − τ ′)

c
× E(τ ′)

]
dτ ′ .

For constant a and ω, the two models are the

same, provided we identify H with F.

This agreement does not extend to the case of

nonuniform acceleration.
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3. Electromagnetic potential model: The actual

electromagnetic potential A relevant for accelerated

observers depends linearly, but nonlocally on the

inertial potential:

Aν =
√
−g gνµ


Aµ + c

τ∫

τ0

Γ0µ
κAκ dτ ′


 .

Concrete example for a uniformly rotating observer:

ϕ = ϕ̂ −
τ∫

τ0

a(τ − τ ′)

c
· Â(τ ′) dτ ′

A = Â +

τ∫

τ0

[
ω(τ − τ ′) × Â − a(τ − τ ′)

c
ϕ̂(τ ′)

]
dτ ′ .
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Equivalence Principle

Observers in a gravitational field and

accelerated observers in Minkowski spacetime

measure the same physics locally.

The question what accelerated observers measure

arises at the core of GR.

Another question: How to connect neighboring affine

tangent spaces? Alternative to traditional approach:

Removing a different integrability condition by defining

a soldering between affine tangent spaces.

Yields a curvature-free manifold with torsion:

teleparallel theory.
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Soldering and affine

connection

ApM AepM

AepM

× ×

×

×

×

×

p p̃

op

op

e2̂
e1̂ oep q

soldering
soldering

Identification

affine connection

horiz. structure

Γ
(T )

ϑ
dx

×

×

×
op

oep

oep + Γ(T ) = q

Γ
(T )

ϑ

dx

ee2̂ ee1̂

ee1̂ + Γ
(L)α

1̂
eeα

ee2̂ + Γ
(L)α

2̂
eeα

Γ
(L)

Γ
(L)
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Teleparallel theories

Lagrangians quadratic in torsion:

V‖ = 1
2`2

(
ρ1

(1)V + ρ2
(2)V + ρ4

(4)V
)
, with:

(1)V = Tα ∧ ?Tα (pure Yang-Mills type) ,

(2)V =
(
Tα ∧ ϑα

)
∧ ?
(
Tβ ∧ ϑβ

)
,

(4)V =
(
Tα ∧ ϑβ

)
∧ ?
(
Tβ ∧ ϑα

)
.

This Lagrangian is equivalent to Einstein’s theory for

ρ1 = 0, ρ2 = −1

2
, ρ4 = 1 .
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Plan for Ph.D. thesis

• Lengths measurements for rotating observers

• Investigation of Unruh effect

• Determine Maxwell’s Equations for Mashhoon

model

• Comparison of different nonlocal alternatives

• Relation between PPN parameters and different

teleparallel models
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