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Abstract

In order to be able to formulate a gravitational theory with non-

gravitating vacuum energy, Guendelman & Kaganovich introduced
four scalar fields in spacetime. These fields are used to define a
measure for integrating the Lagrangian 4-form over the spacetime
manifold. We discuss the options one has for defining a volume
element which can be used for physical theories. We show that
one has to prescribe a scalar density σ. Whereas conventionally√

|det gij | is used for that purpose, with gij as the components of
the metric, we point out other possibilities, namely σ as a ‘dilaton’
field or as a derived quantity from either a linear connection or that
quartet of scalar fields mentioned above.
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1 Introduction

The local geometry of spacetime is usually characterized by two indepen-
dent concepts: The concept of a linear connection (parallel transport) and
the concept of a metric (length and angle measurements). Both, the linear
connection and the metric are physical fields which have to be determined
from field equations of the gravitational theory under consideration.

In physics we do not only want to postulate the fields that are needed
in order to formulate a theory. We also find it desirable to explain the
existence of these fields by means of some fundamental principle. There-
fore we are led to wonder what fundamental principles would suggest the
existence of the linear connection and the metric, respectively.

The existence of the linear connection is quite satisfactorily explained by
a symmetry principle which is believed to be fundamental: This is the
principle of local gauge invariance. In the case of gravity we focus on
external symmetries, i.e., symmetry transformations of spacetime. Local
gauge invariance then reflects the invariance of a physical system under
such transformations. This requires the introduction of a gauge connec-
tion which, in turn, allows to define parallel transport. The actual gauge
connection depends on the specific symmetry under consideration and is,
in a gauge approach to gravity, of the form of a linear connection together
with the coframe; for details, see [10, 6].

In contrast to this, it is not clear how to derive the metric from some
fundamental principle. Usually the existence of the metric is simply as-
sumed, sometimes in disguise of a local symmetry group which contains
an orthogonal subgroup. Therefore it is quite natural to ask whether the
metric itself is a fundamental quantity, a derived quantity, or a quantity
which can be substituted by some more fundamental field. To investigate
this question is one of the motivations for this article. Another motiva-
tion is our desire to understand the work of Guendelman and Kaganovich
(G&K for short) [7, 8, 9] and to put it into a proper perspective in view
of the definition of the spacetime volume element. As we will see, both
motivations will lead to interrelated questions and structures.

Our starting point is the observation that the metric is commonly taken
to define a volume element in order to be able to perform integrations
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on spacetime. Integrated objects are clearly of fundamental importance
in physics. However, the definition of a volume element on spacetime is
also possible without reference to any metric. This general subject will
be explained in Sec. 2. Basically, a volume element can be defined on any
differentiable manifold as the determinant of a parallelepiped defined in
terms of n vectors, if n is the dimension of the manifold. Then no absolute

volume measure exists. However, proportions of different volumes can be
determined. More explicitly, one finds that the volume element is the Levi-
Civita n-form density transvected with the components of the n linearly
independent vectors spanning the parallelepiped. Such a volume is an
(odd) density of weight −1. In order to define an integral, we need then
additionally a scalar density of weight +1.

Usual physical fields are no densities. Therefore the common practice is to
take the metric and to build a density according to

√
|detgij |. But there

exist alternatives, as we will point out in Sec. 3. They open the gate to
alternative theories of gravitation.

Subsequently, in Sec. 4, we will follow up one possibility, namely the quar-
tet of scalar fields, as proposed in [7, 8, 9]. In an appendix, we will provide
some mathematical background for the differentiation of some quantities
closely related to the volume element.

2 Integration on spacetime

We model spacetime as a 4-dimensional differentiable manifold, which is
assumed to be paracompact, Hausdorff, and connected. We will restrict
ourselves to four dimensions. Generalization to arbitrary dimensions is
straightforward. In order to be able to formulate physical laws on such
a spacetime, we have to come up with suitably defined integrals. If we
want, for example, to specify a scalar action functional W of a physical
system,

W =

∫
L =

∫
ε̃ L̂ , (1)

then, taking the integral in its conventional (Lebesgue) meaning, the La-
grangian L has to be an odd 4-form in order to make the integral (1)
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really a scalar. Incidentally, a p-form ω = 1
p!

ωi1...ip dxi1 ∧ · · · ∧ dxip is

called even if it is invariant under a diffeomorphism xi → x′i(xj) with
det

(
∂xj/∂x′i

)
< 0. It is called odd if it changes its sign under such a

diffeomorphism; for even and odd forms, see Burke [2] and also [10].

Now, any odd 4-form can be split into a product of a 0-form (or scalar) L̂
and another odd 4-form ε̃. We assume that we did the splitting in such a
way that the properties of the physical system are subsumed in the scalar
L̂ and the properties of spacetime in the odd volume 4-form ε̃. In the case
of gravity such a distinction may be ambiguous, because the properties of
spacetime themselves are parts of the physical system.

Let us consider a trivial physical system with L̂ = 1. Then the integral
measures the volume of the corresponding piece of spacetime,

Vol =

∫
ε̃ . (2)

For that reason ε̃ is called a volume form or, more colloquially, a volume

element of spacetime. This quantity can be split again into two pieces.

As the first piece we have the Levi-Civita ε in mind which is a very special
geometric object. The Levi-Civita ε can be defined on any differential
manifold. It is the ‘purely geometrical’ volume element. In order to define
ε, we recall that, besides the components of the Kronecker symbol δj

i ,
the components εijkl of the Levi-Civita ε are, by assumption, numerically

invariant under diffeomorphisms. There exist no other quantities of this
kind, apart from ε

ijkl of Sec. 3.4. And, in this sense, these components
are very special. Now we define ε in terms of its components:

ε :=
1

4!
εijkl dxi ∧ dxj ∧ dxk ∧ dxl , with ε0123 = 1 = invariant . (3)

Consequently ε transforms as an odd 4-form density of weight −1 (see,
e.g., [10, Appendix A], for details),

ε
′ =

1

J
ε =

sgnJ

|J |
ε , (4)

where J = det
(
∂xj/∂x′i

)
is the determinant of the Jacobian matrix of

the diffeomorphism xi → x′i(xj). We are denoting densities by boldface
letters.
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We note in passing that for the manipulation of the ε-basis the following
algebraic rules will turn out to be useful. If we take the interior product c
of an arbitrary frame eα with the Levi-Civita ε 4-form density, then we
find a 3-form εα; if we contract again, we find a 2-form εαβ, etc.:

εα := eαcε =
1

3!
εαβγδ ϑβ ∧ ϑγ ∧ ϑδ , (5a)

εαβ := eβcεα =
1

2!
εαβγδ ϑγ ∧ ϑδ , (5b)

εαβγ := eγcεαβ =
1

1!
εαβγδ ϑδ , (5c)

εαβγδ = eδcεαβγ = eδceγceβceαcε . (5d)

Here, the coframe ϑβ is dual to the frame eα, that is, eαcϑ
β = δβ

α. The
(ε , εα , εαβ , εαβγ , εαβγδ) represent a basis for the odd form densities of
weight −1. It is called ε-basis and can be used to define a metric inde-
pendent duality operation. Instead of lowering the rank of the ε’s, we can
also increase their rank by exterior multiplication with the coframe ϑµ :

ϑµ ∧ εα = +δµ
α ε , (6a)

ϑµ ∧ εαβ = −δµ
α εβ + δµ

β εα , (6b)

ϑµ ∧ εαβγ = +δµ
α εβγ − δµ

β εαγ + δµ
γ εαβ , (6c)

ϑµ ∧ εαβγδ = −δµ
α εβγδ + δµ

β εαγδ − δµ
γ εαβδ + δµ

δ εαβγ . (6d)

For the ε̃ (which is an odd 4-form density of weight 0), formulae analogous
to (5),(6) are valid. We have just to add twiddles to the ε’s.

Since ε is an odd density of weight −1, we can split the volume element
ε̃, if we postulate the existence of an even scalar density σ of weight +1,
that is,

σ
′ = |J |σ . (7)

For our purpose here, we postulated an even scalar density, since the
ε̃ in (1) and the Levi-Civita ε in (3) are both odd. Then eventually,
equation (1) can be rewritten as

W =

∫
L︸︷︷︸

odd 4-f.

=

∫
ε̃︸︷︷︸

odd 4-f.

L̂︸︷︷︸
scalar

=

∫
ε︸︷︷︸

odd 4-f. density,
weight −1

even scalar density,
weight +1︷︸︸︷

σ L̂︸︷︷︸
scalar

. (8)
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The scalar density σ, in contrast to the Levi-Civita ε, must be specified in
some way, before one can actually do physics on the spacetime manifold.
It is here where gravity comes in.

3 Choices for the scalar density σ

3.1 Metric

It is conventional wisdom to choose the square root of the modulus of
the metric determinant as the scalar density for building up the volume
element:

0σ :=
√
|det gij | . (9)

As soon as a metric g = gij dxi ⊗ dxj is given – the gravitational poten-
tial of general relativity – we can define 0σ. In conventional integration
theory, this is called the volume measure. We prefer to call it the metric
volume measure and, accordingly, η := 0σ ε the metric volume element.
Remember that Einstein, in his 1916 review paper of general relativity, see
[11, p. 304], only admitted coordinates such that 0σ

∗

= 1. This amounted
to using the ‘purely geometrical’ volume element ε by constraining the
free choice of the coordinates.

3.2 Dilaton field

Alternatively, we can promote the scalar density to a new fundamental
field of nature, compare also the model developed in [10, Sec.6]. The value
of such a density 1σ can be viewed as a scale factor of the volume element,
see also [1, 16]. Thus, from a physical point of view, it is interesting to
investigate the role of 1σ as a scaling parameter which realizes a scale
transformation on a physical system.

Scale transformations as symmetry transformations play an important
part in physics. In particular, in the context of cosmological models and
the study of the unification of the four interactions, it is common to start
from a scale invariant theory (for the sake of renormalizability, e.g.) and
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later derive the scales nowadays observed by some mechanism like spon-
taneous symmetry breaking.

Clearly, scale invariance has to be carefully defined—and there are several
possibilities. Well-known scale transformations are the Weyl transforma-
tions gij −→ e2Φgij which can be thought of as a rescaling of the metric.
In conventional theories, where the volume element is taken as

√
|det gij|,

a Weyl transformation scales the volume element in a definite way. This is
important if Weyl-invariance of an action integral is considered. The possi-
bility to take a metric independent scalar density 1σ in place of

√
|det gij|

in order to build a proper volume element gives new opportunities to de-
fine a concept of scale invariance. In this context, the field 1σ is known
as a dilaton field.

For example, a replacement of
√
|det gij| by an independent 1σ will, a

priori, ‘decouple’ the scaling properties of the volume element from the
scaling properties of the (gravitational and matter) Lagrangian. More-
over, the gravitational field equations which are obtained from varying
the metric, will, in general, be changed. In particular, the metrical en-
ergy momentum current will take a modified form, due to the absence of
the factor

√
|det gij|. Here, the possibility of introducing the independent

field 1σ can lead to a modification of this current and (possibly) related
anomalies. In this sense, employing 1σ as independent scale parameter
yields a lot of opportunities for physical creativity. We will come back to
this question elsewhere.

3.3 Linear connection

In a pure connection ansatz, we prescribe a linear connection Γα
β =

Γiα
βdxi (but no metric!). Define, as usual, the curvature-2-form by

Rα
β = dΓα

β − Γα
γ ∧ Γγ

β (10)

and the Ricci-1-form by

Ricα := eβcRα
β = Riciα dxi . (11)

Then

2σ :=
√

|det Ricij| , (12)
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with Ricij = Riciα ej
α, is a viable scalar density, as first suggested by

Eddington [4, Sec. 92], compare also Schrödinger [15] and the more recent
work of Kijowski and collaborators, see [3]. Likewise, the corresponding
quantity based on the symmetric part of the Ricci tensor,

3σ :=
√∣∣det Ric(ij)

∣∣ , (13)

also qualifies as a volume measure. Note that 2σ and 3σ may have singular
points in such a theory as soon as the Ricci tensor or its symmetric part
vanish. There seems to exist no criterion around which would prefer, say,

2σ, as compared to 3σ. Lately, such theories have been abandoned.

3.4 A quartet of scalar fields

In close analogy to the components εijkl of the Levi-Civita ε, we can define
the totally antisymmetric tensor density ε

ijkl of weight +1. We put its
numerically invariant component ε

0123 = −1.

Following G&K [7], we then can define

4σ := −ε
ijkl

(
∂iϕ

(0)
) (

∂jϕ
(1)

) (
∂kϕ

(2)
) (

∂lϕ
(3)

)

= −
1

4!
ε

ijkl εABCD

(
∂iϕ

A
) (

∂jϕ
B
) (

∂kϕ
C
) (

∂lϕ
D
)

, (14)

where A, . . . ,D are indices of interior space. This definition yields, for the
volume 4-form

η := 4σ ε , (15)

the following relations:

η = dϕ(0) ∧ dϕ(1) ∧ dϕ(2) ∧ dϕ(3) =
1

4!
εABCD dϕA ∧ dϕB ∧ dϕC ∧ dϕD .

(16)

If we introduce the abbreviation

∂A :=
∂

∂ϕA
, (17)
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then the duality of dϕA and ∂B can be expressed as follows:

dϕA [∂B] = δA
B . (18)

In analogy to the set of equation (5), we define the 3-form and the 2-form

ηA := ∂Acη , ηAB := ∂BcηA , etc. (19)

Explicitly they read

ηA =
1

3!
εABCDdϕB ∧ dϕC ∧ dϕD , ηAB =

1

2!
εABCDdϕC ∧ dϕD , etc.

(20)

In analogy to (6) we have

dϕN ∧ ηA = +δN
A η , dϕN ∧ ηAB = −δN

A ηB + δN
B ηA , etc. (21)

We contract (21) and find

η =
1

4
dϕN ∧ ηN , ηA =

1

3
dϕN ∧ ηAN , etc. (22)

We differentiate (22):

d η = −
1

4
dϕN ∧ d ηN , d ηA = −

1

3
dϕN ∧ d ηAN , etc. (23)

Now, η, as a 4-form, is closed:

d η = 0 . (24)

Provided dϕA 6= 0, we find successively,

d ηA = 0 , d ηAB = 0 , etc. (25)

Using this information, we can partially integrate (22) and can prove that
all these forms are not only closed, but also exact:

η = d

[
1

4
ϕN ∧ ηN

]
, ηA = d

[
1

3
ϕN ∧ ηAN

]
, etc. (26)
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Using (16) and (20), we find

∂ η

∂ dϕA
= ηA ,

∂ ηA

∂ dϕB
= ηAB , etc. (27)

or, because of (26):

d
∂ η

∂ dϕA
= 0 , d

∂ ηA

∂ dϕB
= 0 , etc. (28)

Since the corresponding “forces” vanish too, as can be seen from (16) and
(20),

∂ η

∂ ϕA
= 0 ,

∂ ηA

∂ ϕB
= 0 , etc., (29)

we find an analogous result for the variational derivatives:

δ η

δ ϕA
= 0 ,

δ ηA

δ ϕB
= 0 , etc. (30)

Similarly, we have

δη

δϑα
= 0 ,

δηA

δϑα
= 0 , etc. (31)

and

δη

δgαβ

= 0 ,
δηA

δgαβ

= 0 , etc. (32)

That the G&K-volume element is an exact form is the distinguishing fea-
ture of this ansatz. It is for that reason why the existence of a quartet
of fundamental scalar fields is required instead of only one scalar field.
Under these circumstances, the volume (2) can be expressed, via Stokes’
theorem, as a 3-dimensional surface integral which doesn’t contribute to
the variation of the action functional.
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4 The G&K-theory

Using (8) and the G&K volume element (16) and denoting the gravita-
tional Lagrangian by V = V (gαβ, ϑα, Qαβ, Tα, Rα

β) and the matter La-
grangian by Lm = Lm(gαβ, ϑα,Γα

β,Ψ, dΨ), the action W reads

W =

∫
(V + Lm) =

∫
η (V̂ + L̂m)︸ ︷︷ ︸

scalar

=

∫
dχ (V̂ + L̂m) . (33)

Note that the 3-form χ, according to (26), explicitly reads χ := ϕN ∧ηN/4.
If we add a constant λ to the scalar Lagrangian, we find

∫
dχ (V̂ + L̂m + λ) = W + λ

∫
dχ . (34)

Since the 3-dimensional hypersurface integral
∫

∂ Vol
χ doesn’t contribute

to the variation, the scalar Lagrangian is invariant under the addition of
a constant. This is the main tool of G&K in their model building.

Variation with respect to ϕA yields the corresponding field equations

∂ (V + Lm)

∂ϕA
− d

∂ (V + Lm)

∂ dϕA
= 0 . (35)

Suppose, as G&K in fact do, that V̂ and L̂m do not depend on the quartet
field at all,

∂ V̂

∂ ϕA
= 0 ,

∂ V̂

∂ dϕA
= 0 ,

∂ L̂m

∂ ϕA
= 0 ,

∂ L̂m

∂ dϕA
= 0 , (36)

then the field equations for the quartet field read

(V̂ + L̂m)
∂ η

∂ϕA
− d

[
(V̂ + L̂m)

∂ η

∂ dϕA

]
= 0 . (37)

The first term vanishes, since η does not depend on ϕA explicitly, see (29).
Then the Leibniz rule yields

d

[
(V̂ + L̂m)

∂ η

∂ dϕA

]
=

∂ η

∂ dϕA
d (V̂ + L̂m) + (V̂ + L̂m) d

∂ η

∂ dϕA

︸ ︷︷ ︸
(28)
= 0

= 0 .

(38)
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Provided ϕA 6= 0 and dϕA 6= 0, we can conclude that

d (V̂ + L̂m) = 0 , i.e., V̂ + L̂m = const . (39)

The gravitational field equations following from δgαβ and δΓα
β are not

disturbed by the existence of ϕA. Hence the usual metric-affine formalism
applies in its conventional form (see [10], for recent developments cf. [13,
14, 12, 5]), but the field equation (39) for the scalar field quartet ϕA has
to be appended. Perhaps surprisingly, it is only one equation since, in
addition to (31) and (32), we trivially have

δη

δΓα
β

= 0 ,
δηA

δΓα
β

= 0 , etc. (40)

5 Conclusion

We can reproduce the essential features of the G&K-theory without the
necessity to specify the gravitational first-order Lagrangian other than by
the property (36).
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A Covariant exterior derivative of the

ε-basis

For computations with the volume elements, it is convenient to introduce
the differentials of the ε- and the ε̃-basis. As soon as a linear connection
1-form Γα

β = Γiα
βdxi is given – there is no need of a metric for that – we
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find by covariant exterior differentiation of (5),

Dεα = T µ ∧ εαµ , (41a)

Dεαβ = T µ ∧ εαβµ , (41b)

Dεαβγ = T µ ∧ εαβγµ , (41c)

Dεαβγδ = 0 . (41d)

Here Tα := Dϑα is the torsion 2-form. For the σ–modified ε̃–basis, the
computations run on the same track,

Dε̃α =
Dσ

σ

∧ ε̃α + T µ ∧ ε̃αµ , (42a)

Dε̃αβ =
Dσ

σ

∧ ε̃αβ + T µ ∧ ε̃αβµ , (42b)

Dε̃αβγ =
Dσ

σ

∧ ε̃αβγ + T µ ∧ ε̃αβγµ , (42c)

Dε̃αβγδ =
Dσ

σ

∧ ε̃αβγδ . (42d)

the advantage being that this basis is composed of forms of weight 0, i.e.,
not of densities.

If a metric g is given additionally, then we can take 0σ as scalar density
and find generally,

D0σ

0σ

= −2 Q , (43)

with the Weyl covector Q := Qγ
γ/4 and the nonmetricity 1-form Qαβ :=

−Dgαβ. It is then simple to rewrite (42) in terms of the metric volume
element η := 0σ ε:

Dηα = −2Q ∧ ηα + T µ ∧ ηαµ , (44a)

Dηαβ = −2Q ∧ ηαβ + T µ ∧ ηαβµ , (44b)

Dηαβγ = −2Q ∧ ηαβγ + T µ ∧ ηαβγµ , (44c)

Dηαβγδ = −2Q ∧ ηαβγδ . (44d)

These equations turn out to be very helpful in conventional applications.
However, in the G&K-theory, we have to forget (44) and to take recourse
to 4σ.
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Thus, analogously to (42), we have

Dηα =
D4σ

4σ

∧ ηα + T µ ∧ ηαµ , (45a)

Dηαβ =
D4σ

4σ

∧ ηαβ + T µ ∧ ηαβµ , (45b)

Dηαβγ =
D4σ

4σ

∧ ηαβγ + T µ ∧ ηαβγµ , (45c)

Dηαβγδ =
D4σ

4σ

∧ ηαβγδ . (45d)

We find

D4σ

4σ

=
d4σ

4σ

− Γα
α , (46)

but we were not able to derive a more compact expression for (46).
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[5] A. Garćıa, C. Lämmerzahl, A. Maćıas, E.W. Mielke, J. Socorro: Colliding waves

in metric-affine gravity, Phys. Rev. D57 (1998), to be published. [gr-qc/9711041]

[6] F. Gronwald: Metric-affine gauge theory of gravity I. Fundamental structure and

field equations, Int. J. of Mod. Phys. D6 (1997) 263–303. [gr-qc/9702034]

[7] E.I. Guendelman, A.B. Kaganovich: Principle of nongravitating vacuum energy

and some of its consequences. Phys.Rev. D53 (1996) 7020–7025. [gr-qc/9605026]

[8] E.I. Guendelman, A.B. Kaganovich: Gravitational theory without the cosmologi-

cal constant problem. Phys. Rev. D55 (1997) 5970–5980. [gr-qc/9611046]

14



[9] E.I. Guendelman, A.B. Kaganovich: Gravitational theory without the cosmologi-

cal constant problem, symmetries of space filling branes and higher dimensions.

Phys. Rev. D56 (1997) 3548–3554. [gr-qc/9702058]

[10] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne’eman: Metric-affine gauge theory

of gravity: Field equations, Noether identities, world spinors, and breaking of

dilation invariance, Physics Reports 258 (1995) 1–171.

[11] A. J. Kox, M. J. Klein, R. Schulmann (editors): The Collected Papers of Albert

Einstein, volume 6: The Berlin years: Writing 1914–1917 (Princeton University
Press, Princeton 1996).
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