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A small guide to variations in teleparallel gauge

theories of gravity and the Kaniel-Itin model

Uwe Muench, Frank Gronwald, Friedrich W. Hehl∗

Abstract

Recently Kaniel & Itin proposed a gravitational model with the
wave type equation [�+λ(x)]ϑα = 0 as vacuum field equation, where
ϑα denotes the coframe of spacetime. They found that the viable
Yilmaz-Rosen metric is an exact solution of the tracefree part of their
field equation. This model belongs to the teleparallelism class of grav-
itational gauge theories. Of decisive importance for the evaluation of
the Kaniel-Itin model is the question whether the variation of the
coframe commutes with the Hodge star. We find a master formula
for this commutator and rectify some corresponding mistakes in the
literature. Then we turn to a detailed discussion of the Kaniel-Itin
model. file kaniel21.tex, 1998-01-12
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1 Introduction

We were very much surprised when we learned during the 8th Marcel Gross-
mann Meeting in Jerusalem [1] that Kaniel & Itin [2] were able to propose a
gravitational model which looks viable at a first sight even if it had neither
an Einstein-Hilbert type of Lagrangian nor the Schwarzschild metric as an
exact solution. Their gravitational potential is represented by a quartet of
1-forms ϑ0̂, ϑ1̂, ϑ2̂, ϑ3̂ or, for short, by ϑα, which constitutes the coframe
field of spacetime. Their vacuum field equation is simply the wave equation
with an additional ‘massive’ contribution depending on some scalar field
λ(x):

[�+ λ(x)] ϑα = 0 . (1)
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Variations in teleparallel theories 2

They show that the Yilmaz-Rosen metric [3, 4] solves the tracefree part of
(1) exactly.

Let us be a bit more specific: The Yilmaz-Rosen metric, in isotropic coor-
dinates, is given by

g = e−
2m
r dt2 − e 2m

r
(
dx2 + dy2 + dz2

)
, (2)

where r2 := x2 + y2 + z2. If we introduce an orthonormal coframe,

g = oαβ ϑ
α ⊗ ϑβ with oαβ = diag(+1,−1,−1,−1) , (3)

then the following coframe, up to arbitrary local Lorentz transformations,
represents the Yilmaz-Rosen metric:

ϑt̂ = e−
m
r dt , ϑx̂ = e

m
r dx , ϑŷ = e

m
r dy , and ϑẑ = e

m
r dz . (4)

The tracefree part of (1) will be determined in Sec. 5.2 and turns out to be[
�− 1

4
(eβc�ϑβ)

]
ϑα = 0 . (5)

The coframe (4) solves the tracefree field equation (5) exactly. We have ver-
ified this by means of our computer algebra program kaniti.exi displayed
in the appendix in Sec. B.

Kaniel & Itin tried to derive the field equation (1) from a suitable La-
grangian. For that purpose they had to assume specifically that the varia-
tion δϑα of the coframe ϑα commutes with the Hodge star: ?δϑα = δ ?ϑα.
However, such a commutativity is only valid for internal Yang-Mills fields.
It is violated for the coframe and the metric. Therefore the Kaniel-Itin
model is based on somewhat shaky foundations.

In the light of the results mentioned so far, the following questions come to
mind: (i) What is the source on the right hand side of the field equation
(1)? (ii) Can the Yilmaz-Rosen metric also be adjusted to the trace part of
(1) and, more generally, to a possible source term on the right hand side of
(1)? (iii) Is there a consistent variational principle available which would
allow to derive (1), including a source term, from a suitable Lagrangian?
(iv) What is the (geometrical?) meaning of the constrained variations of
Kaniel & Itin?

The purpose of this article is to try to answer these questions. Moreover,
along our way, we will discuss some unclear points on the commutativity of
variation and Hodge star which led to some (so far uncorrected) mistakes
in the literature.—
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In Sec. 2 we provide some background material on how to derive wave equa-
tions of the general type (1) from Lagrangians in Maxwell’s theory and in
theories of other internal fields. Here and in the following internal fields
are those which do not depend on the spacetime geometry (in contrast to
ϑα and gαβ). In this way we are able to understand how the Lagrangian of
Kaniel-Itin comes up in the first place. But since they identify the gravi-
tational potential with the coframe, we run into trouble from the point of
view of finding a suitable Lagrangian.

Any reasonable gauge approach to gravity contains in some way the gauging
of the translation group. The simplest gauge theories of gravity are telepar-
allel theories with only the translation group as gauge group. They already
require the knowledge of how to vary the Hodge dual of forms. In a telepar-
allel theory, spacetime can be described by an orthonormal coframe ϑα as
the only gravitational field variable, which is interpreted as translational
gauge potential, see [5]. And this gauge potential was used by Kaniel-Itin
in their model. Accordingly, their Lagrangian is a special teleparallelism
Lagrangian with the additional postulate of constrained variations. The
commutativity of δ and ? is, in general, not fulfilled for gauge theories of
external (or spacetime) groups, i.e., for gravitational gauge theories. In this
case it is important to know the commutator δ? − ?δ of the variation δ and
the Hodge star ?.

Therefore, in Sec. 3 we will derive the master formula (33) for δ? − ?δ. We
will include general variations of the components gαβ of the Riemannian
metric g besides those of a (not necessarily orthonormal) coframe ϑα. If
we insist, in accordance with the Kaniel-Itin postulate, on commutativity
of δ and ?, then the variations δgαβ of the components of the metric are no
longer independent and can be expressed in terms of the variation δϑα of
the coframe, see (35).

In Sec. 4 we give a short overview of teleparallelism theories and the rele-
vant quadratic Lagrangians. We will discuss the viable set of Lagrangians
and display the results in Table 1. We will show that the KI-Lagrangian,
for arbitrary variations, is not viable. Some errors in the literature (see
Schweitzer et al. [6, 7]) are rectified.

In Sec. 5, we evaluate the model of Kanin & Itin [2]. The field equation
of the constrained variational principle is the antisymmetric part of a wave
equation for ϑα, in contrast to the full wave equation as claimed by Kaniel
and Itin.

The Yilmaz-Rosen metric, found by Yilmaz [3, Eqs.(18) and (20)] in 1958 as
a solution in the context of a scalar field theory of gravitation, also turned
out to be a solution of the bi-metric theory of gravitation of Rosen [4];
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cf. also [8, 9]. And, in the Kaniel-Itin model, it solves the tracefree wave
equation. In Sec. 5.3 we compare the Yilmaz-Rosen with the Schwarzschild
metric and give, in Sec. 5.4, a motivation for the emergence of the Yilmaz-
Rosen metric. Finally, we investigate the implications that would arise if
the Yilmaz-Rosen metric is considered to be a solution of the field equation
of Kaniel & Itin including its trace. In Sec. 6 we collect our arguments.

2 Prolegomena to the Kaniel-Itin model

2.1 Maxwell’s theory and the wave equation

The kinetic part of the Lagrangian of a Yang-Mills theory is conventionally
built from the first derivative of the gauge potential A and the corresponding
Hodge dual. For an internal gauge group, such as for the U(1) or the SU(2),
the gauge potential A is independent of the metric g or the coframe ϑα of
the underlying spacetime manifold. Then the variation δ of A commutes
with the Hodge star operator ?. Let us illustrate this for Maxwell’s theory,
i.e., for U(1)-gauge theory in Minkowski spacetime.

The Maxwell Lagrangian is given by1

LMax =
1
2
dA∧ ?dA . (6)

The variation of the 1-form A is independent of the variations δϑα or δgαβ;
furthermore, it commutes with the exterior derivative, since the variation is
defined in this way. Therefore, with the coderivative d† := −?d?, we find

δLMax = d(δA ∧ ?dA)− δA ∧ ?d†dA . (7)

Thus the vacuum field equation reads:

−?d†dA = 0 . (8)

Additionally, we take the Lorentz condition

d†A = 0 (9)

as a gauge condition. Then, introducing the d’Alembertian

� := d†d+ dd† = −?d?d− d?d? , (10)

1We are using the calculus of exterior differential forms, cf. [10, 11]. Our conventions
are fixed in [12].
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the vacuum field equation can be rewritten as

−� ?A = 0 . (11)

One could try to derive (11) directly by supplementing (6) with a suitable
Lagrangian. The choice

L†Max :=
1
2
d†A ∧ ?d†A (12)

looks suggestive. It leads to the field equation

−?d d†A = 0 , (13)

which should be compared with (8). Consequently the sum of the La-
grangians (6) and (12), enriched by a matter Lagrangian,

LMax + L†Max + Lmat =
1
2
(
dA ∧ ?dA+ d†A ∧ ?d†A

)
+ Lmat (14)

would yield directly the wave equation:

� ?A =
δLmat

δA
. (15)

However, the Lagrangian (12) is not gauge-invariant: For the regauging by
means of the arbitrary function f ,

A −→ A + df , (16)

one finds2

L†Max −→ L†Max + ?d†df ∧
(
d†A+

1
2
d†df

)
. (17)

Accordingly, the Lagrangian (14) has to be rejected. We can obtain the
wave equation (11) only in the special gauge (9), after the derivation of the
field equation by means of the variational principle with the Lagrangian (6).

2Incidentally, as pointed out by Obukhov, the Lagrangian (12) represents an example
for a Lagrangian of a gauge theory of p-forms, see [13, 14]. Then, instead of (16), one has
A→ A+d†φ as gauge transformation, since d†d† = 0. And the new “Lorentz condition”
is dA = 0.



Variations in teleparallel theories 6

2.2 A quartet of massive one-form fields

If we used massive fields, then we would have no difficulties with lack of
gauge invariance, because the mass term is not gauge invariant anyway.
Since we want to study gravity à la Kaniel-Itin, we start with a quartet of
1-form fields kI , where I is an internal index with I = 0̌, 1̌, 2̌, 3̌. We again
derive a wave type equation as in the last subsection, but we now add a
massive term for each of the four fields:

Lk =
1
2
(
dkI ∧ ?dkI + d†kI ∧ ?d†kI −m(I) k

I ∧ ?kI
)

+ Lmat . (18)

We vary with respect to kI and find as the Euler-Lagrange equation:(
�+m(I)

)
?kI =

δLmat

δkI
. (19)

One could also think of an additional Higgs-type (or ‘cosmological’) term.
Then we would have

Lk′ =
1
2
(
dkI ∧ ?dkI + d†kI ∧ ?d†kI −m(I) k

I ∧ ?kI
)

− λ

4!
εIJKL k

I ∧ kJ ∧ kK ∧ kL + Lmat ,

(20)

and, as field equation,(
�+m(I)

)
?kI +

λ

3!
εIJKL k

J ∧ kK ∧ kL =
δLmat

δkI
. (21)

This is as near as we can approach the field equation (1). Since currents are
3-forms, we take the Hodge dual of (1) and remember ?� = � ?. Further-
more we put a source term on its right hand side. In gravitational theory,
this can be only the matter current Σα, representing the energy-momentum
flux of matter. Then the completed Kaniel-Itin field equation reads:

[�+ λ(x)] ?ϑα =
δLmat

δϑα
=: Σα . (22)

Since λ(x) is a function, it cannot be identified with some constant mass
m(I). Also an interpretation of λ(x) as a cosmological constant is obviously
meaningless. Therefore the equations (21) and (22) have to be carefully
distinguished. In future, we will refer to (22) as the (completed) Kaniel-Itin
field equation. Eq.(22) represents the heart of their theory.
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2.3 Relation to teleparallel theories

Kaniel-Itin proposed in [2, Eq.(8)] the following Lagrangian for the deriva-
tion of the vacuum version of (22):

orig

VKI =
1
2
[
dϑα ∧ ?dϑα − d†ϑα ∧ ?d†ϑα + λ(x)(ϑα ∧ ?ϑα − 4η)

]
. (23)

We used our notation here. We want to correct this Lagrangian in two
respects: (i) If we compare (20) with (21), it is clear that we should add the
first two terms, instead of subtracting them. (ii) The Lagrange multiplier
term is a hoax since the expression multiplying λ(x) vanishes identically:
We have quite generally ϑα ∧ ηβ = δαβη, with ηβ := ?ϑβ, and the trace of
this equation proves our contention. Taking care of both objections, we will
call

VKI =
1
2
(
dϑα ∧ ?dϑα + d†ϑα ∧ ?d†ϑα

)
(24)

the (corrected) Kaniel-Itin Lagrangian. If we recall that we were able to
derive (21) from (20) only because the kI was an internal field, the variation
of which commutes with the star, then it becomes clear that Kaniel-Itin field
equation (22), for Σα = 0, is not the Euler-Lagrange equation of (24).

In the Kaniel-Itin model, the Hodge star no longer commutes with the
variation δϑα since their gravitational potential ϑα is inseparably connected
to the spacetime manifold. A postulate of Kaniel-Itin to the opposite, see
[2, statement between Eqs.(7) and (8)], is without foundation, at least from
a geometrical point of view. Consequently, we will give up this postulate.
The Kaniel-Itin Lagrangian belongs to the so-called teleparallelism models
of gravity. We will come back to this in Sec. 4.

The addition of the adjoint piece in (24) does not break the translational
invariance since d?ϑα, and thus d†ϑα, can be rewritten in terms of dϑα

(shown here for an orthonormal coframe):

d ?ϑα = dηα = dϑβ ∧ ηαβ . (25)

An analogous procedure is not available in the Maxwellian case for d?A,
that is, d?A cannot be expressed in terms of dA. Therefore L†Max is not
gauge invariant, see (17), and has to be rejected as a decent Lagrangian.

3 Variation of the Hodge dual of a form
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3.1 The master formula

In order to install the variation δ as a derivation, we demand that it fulfills
an even Leibniz rule,

δ(ω1 ∧ ω2) = δω1 ∧ ω2 + ω1 ∧ δω2 , (26)

where ω1 and ω2 are arbitrary exterior differential forms. The Leibniz rule
is even, because the variation does not change the degree of the form. In
contrast to this, the interior product vc (here v is a vector) and the exterior
derivative d decrease or increase, respectively, the degree of the form by one
and fulfill an odd Leibniz rule.

Furthermore, we need a relation between the variation and the exterior
derivative. According to the definition of the variation, they simply com-
mute:

[d, δ] = 0 . (27)

Let us now turn to the Hodge star operator, see [12]. It maps a p–form
ψ = 1

p! ψα1···αpϑ
α1∧· · ·∧ϑαp into an (n−p)–form ?ψ ; here n is the dimension

of the manifold, i.e., in our case n = 4. In terms of components we have

?ψ :=
1

(n − p)! p!

√
| det gµν | gα1γ1 · · · gαpγp ×

εα1···αpβ1···βn−p ψγ1···γp ϑ
β1∧ · · · ∧ ϑβn−p , (28)

where ε is the Levi-Civita symbol. Besides the ϑ-basis
{

1, ϑα1, ϑα1 ∧

ϑα2 , . . . , ϑα1 ∧ ϑα2 ∧ · · · ∧ ϑαn
}

, having the Hodge star at our disposal,
we may define the so-called η-basis:{

η, ηα1, ηα1α2, . . . , ηα1α2···αn
}

:={
?1, ?ϑα1 , ?(ϑα1 ∧ ϑα2), . . . , ?(ϑα1 ∧ ϑα2 ∧ · · · ∧ ϑαn)

}
.

(29)

Now we can derive the desired expression for δ?φ, for an arbitrary p-form
φ. We can saturate the (n− p)-form ?φ with coframes ϑβ such as to arrive
at the n-form

ϑβ1 ∧ · · · ∧ ϑβp ∧ ?φ (97)
= φ ∧ ?

(
ϑβ1 ∧ · · · ∧ ϑβp

) (100b)
= φ ∧ ηβ1...βp . (30)

We vary (30). Then the even Leibniz rule (26) for the variation leads to
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δ
(
ϑβ1 ∧ · · · ∧ ϑβp

)
∧ ?φ+ ϑβ1 ∧ · · · ∧ ϑβp ∧ δ?φ =

δφ ∧ ηβ1...βp + φ ∧ δηβ1...βp . (31)

Thus, apparently, we know how to vary the Hodge star, provided we know
how to vary the η-basis. The variation of the (n − p)-form ηα1···αp is com-
puted in the appendix in Sec. A.2. It turns out to be

δηβ1...βp = δϑµ ∧
(
eµcηβ1...βp

)
+ δgκλ

(
ϑ(κ| ∧ ηβ1...βp|λ) − 1

2
gκληβ1...βp

)
.

(32)

Incidentally, for the special choice of an orthonormal tetrad, we have δgαβ =
0, and the last two terms vanish; in particular, we then have δηβ1...βn = 0.
But we will not introduce this specialization at the present stage.

If we resolve (31) with respect to δ?φ, then, after some intermediary algebra,
see Sec. A.3 of the appendix, we find for arbitrary p-forms φ the master
formula:

(δ? − ?δ)φ = δϑα ∧ (eαc?φ)− ?
[
δϑα ∧ (eαcφ)

]
+ δgαβ

[
ϑ(α∧(eβ)c?φ) − 1

2
gαβ ?φ

]
.

(33)

Again, for orthonormal (co)frames, the terms in the second line vanish since
δgαβ = 0.

3.2 Constrained variations à la Yang-Mills

Proposition: The condition

δ?φ = ?δφ (34)

for an arbitrary p-form φ is equivalent to the following relation between the
variation of the metric and the coframe:

δgαβ = −2gγ(α eβ)cδϑγ = −2ω(αβ) , with δϑγ = ωδ
γϑδ . (35)

Therefore, for an orthonormal coframe, the allowed variations are of the
Lorentz type, i.e., ω(αβ) ≡ 0.

To prove3 this equivalence we first assume that (34) is valid. We apply this
constrained variation to the volume n-form η := ?1, defined in (29),

δη = δ(?1) = ?(δ1) ≡ 0 , (36)

3It was Yuri Obukhov who suggested essential parts of this proof to us.
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since the constant 1 is not varied. In turn, for the identity

ϑα ∧ ηβ = δαβ η (37)

we find:

δϑα ∧ ηβ + ϑα ∧ δηβ = 0 . (38)

The commutation rule (34) applied to ϑβ yields

δηβ = δ(?ϑβ) = ?(δϑβ) . (39)

Thus, by exterior multiplication with ϑα we arrive at

ϑα ∧ δηβ = ϑα ∧ ?(δϑβ) = δϑβ ∧ ?ϑα = δ(gβγϑγ) ∧ ηα . (40)

On substitution into (38), we find

δϑα ∧ ηβ + gβγ δϑ
γ ∧ ηα + δgβγ ϑ

γ ∧ ηα = 0 (41)

or, since ηβ = eβcη,

δgαβ = −2gγ(α eβ)cδϑγ . (42)

The 1-form δϑα can be expanded with respect to the coframe:

δϑγ = ωδ
γϑδ . (43)

We insert (43) into (42). Then we find

δgαβ = −2ω(αβ) . (44)

To investigate the reverse part of the proposition, we apply the general rule
(33) for the variations of Hodge dual forms and use (43) and (44):

(δ? − ?δ)φ = ωβα
[
ϑβ ∧ (eαc?φ)− ?

[
ϑβ ∧ (eαcφ)

]]
− 2ω(βα) ϑα∧(eβc?φ) + ωγ

γ ?φ

= ωβα
[
− ϑα ∧ (eβc?φ)− ?

[
ϑβ ∧ (eαcφ)

]
+ gαβ

?φ
]

= ωβα
[
eβc(ϑα ∧ ?φ)− ?

[
ϑβ ∧ (eαcφ)

]]
(98a), (98c)

= ωβα eβc?(eαcφ)
[ 1

(−1)p−1
− (−1)p−1

]
= 0 .

(45)

Thus the proposition is proved.
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4 Teleparallelism theories of gravity

A Minkowski space is invariant under rigid translations. In order to make a
manifold locally translation invariant, one can introduce a gauge potential
by means of a dynamical coframe ϑα, see [15, 5, 16, 17, 18, 11, 19]. Such a
spacetime carries a torsion, but no curvature: It is a so-called Weitzenböck
spacetime. Then, by picking a suitable frame, the connection Γαβ can always
globally be transformed to zero.

Therefore, in a teleparallel theory, the coframe ϑα is the basic gravitational
field variable. Furthermore, let a metric g be given of Minkowskian signa-
ture, i. e. of index 3 (number of negative eigenvalues of the metric). For the
rest of this paper we choose the coframe to be orthonormal, g := oαβ ϑ

α⊗ϑβ,
with oαβ = diag(+1,−1,−1,−1), and raise and lower the frame indices by
means of oαβ.

4.1 The Rumpf Lagrangians

According to Rumpf [20], a general quadratic Lagrangian for the coframe ϑα

can be expanded in terms of the gauge-invariant translational Lagrangians
(` = Planck length, Λ = cosmological constant = ρ0/2):

V =
1

2`2

4∑
K=0

ρK
[K]V , (46)

with

[0]V =
1
4
ϑα ∧ ?ϑα = η , (47a)

[1]V = dϑα ∧ ?dϑα (pure Yang-Mills type) , (47b)
[2]V =

(
dϑα ∧ ϑα

)
∧ ?
(
dϑβ ∧ ϑβ

)
, (47c)

[3]V =
(
dϑα ∧ ϑβ

)
∧ ? (dϑα ∧ ϑβ) = dϑα ∧ ϑβ ∧ (eβc?dϑα) = 2 [1]V ,

(47d)
[4]V =

(
dϑα ∧ ϑβ

)
∧ ?
(
dϑβ ∧ ϑα

)
. (47e)

Since [3]V = 2 [1]V , we can always put ρ3 = 0.
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4.2 The irreducible Lagrangians

Alternatively, the field strength dϑα can be decomposed into three pieces
which transform irreducibly under the Lorentz group:

dϑα = (1)dϑα + (2)dϑα + (3)dϑα . (48)

Here we defined (in parentheses we are mentioning the corresponding names
of our computer algebra programs):

(1)dϑα := dϑα − (2)dϑα − (3)dϑα (tentor), (49a)

(2)dϑα :=
1
3
ϑα ∧ (eβcdϑβ) (trator), (49b)

(3)dϑα :=
1
3
eαc

(
ϑβ ∧ dϑβ

)
(axitor). (49c)

In terms of the numbers of components involved, we have the decomposition
24 = 16⊕ 4⊕ 4.

Then we can write

V =
1

2`2

[
a0 η +

3∑
I=1

aI
(
dϑα ∧ ? (I)dϑα

)]
. (50)

We substitute (48) and (49) into (47). Then a comparison between (46) and
(50) yields

ρ1 =
1
3

(a2 + 2a1) , ρ2 =
1
3

(a3 − a1) , ρ4 =
1
3

(a1 − a2) , (51)

a1 = ρ1 + ρ4 , a2 = ρ1 − 2ρ4 , a3 = ρ1 + 3ρ2 + ρ4 , (52)

and, additionally a0 = ρ0 = 2Λ. These relations were checked by means of
a computer algebra program, see Sec. B of the appendix.

4.3 Field equation

The field equation of a general translation invariant Lagrangian reads [15]

dHα −Eα = Σα , (53)

with

Hα := − ∂V

∂dϑα
, Eα :=

∂V

∂ϑα
, and Σα :=

δLmat

δϑα
. (54)
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In (54), the partial derivatives are implicitly defined by means of the varia-
tion of the Lagrangian:

δV = δϑα ∧ ∂V

∂ϑα
+ δ dϑα ∧ ∂V

∂dϑα
. (55)

If we use the abbreviations (54), we don’t need our master formula for
the computation of the field equation. Alternatively, one can take the La-
grangian (46) together with (47) and vary the resulting expression by using
(33) with δgαβ = 0. This yields the explicit form of the field equation (53),
cf. Kopczyński [21]4:

−2 `2Σα = 2ρ1 d
?dϑα − 2ρ2 ϑα ∧ d ?

(
dϑβ ∧ ϑβ

)
− 2ρ4 ϑβ ∧ d ?

(
ϑα ∧ dϑβ

)
+ ρ1

[
eαc

(
dϑβ ∧ ?dϑβ

)
− 2

(
eαcdϑβ

)
∧ ?dϑβ

]
+ ρ2

[
2dϑα ∧ ?

(
dϑβ ∧ ϑβ

)
+ eαc

(
dϑγ ∧ ϑγ ∧ ?

(
dϑβ ∧ ϑβ

))
− 2

(
eαcdϑβ

)
∧ ϑβ ∧ ? (dϑγ ∧ ϑγ)

]
+ ρ4

[
2dϑβ ∧ ?

(
ϑα ∧ dϑβ

)
+ eαc

(
ϑγ ∧ dϑβ ∧ ? (dϑγ ∧ ϑβ)

)
− 2

(
eαcdϑβ

)
∧ ϑγ ∧ ? (dϑγ ∧ ϑβ)

]
.

(56)

In the first line of this equation we displayed the leading terms containing
second derivatives of the coframe. In the remaining terms there enter only
first derivatives.

4.4 Decomposition of the Kaniel-Itin Lagrangian

In order to better recognize the structure of the KI-Lagrangian, one can
decompose it in its irreducible pieces as well as into the Rumpf Lagrangians.

The first term of the KI-Lagrangian (24) is exactly the Yang-Mills type
Lagrangian [1]V , cf. with (47). The term d†ϑα ∧ ?d†ϑα = −d?ϑα ∧ ?d?ϑα is
left for scrutiny. Using formula (25) and other rules, see, e.g., [12] and Sec.

4Kopczyński denoted the Rumpf Lagrangians by K. We have the following transla-
tion rules: K1 = [4]V , K2 = [2]V , K3 = [1]V . In (56), the second derivatives of the
coframe are exactly the same (for `2 = 1) as those in the corresponding three equations
of Kopczyński [21, top of p. 503].
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A.1 for details, we find

−d ?ϑα ∧ ?d ?ϑα = −dηα ∧ ?dηα = −dϑβ ∧ ηαβ ∧ ? (dϑγ ∧ ηαγ)

= −ϑα ∧ ϑβ ∧ ?dϑβ ∧ ? (ϑα ∧ ϑγ ∧ ?dϑγ)

= ϑα ∧ ϑβ ∧ ?dϑβ ∧ ? [ϑα ∧ ? (eγcdϑγ)]

= ϑβ ∧ ?dϑβ ∧ ϑα ∧ [eαc (eγcdϑγ)]

= ?dϑβ ∧ ϑβ ∧ (eγcdϑγ) = ?
[
ϑβ ∧ (eγcdϑγ)

]
∧ dϑβ

= −dϑβ ∧ ?
[
eγc
(
ϑβ ∧ dϑγ

)]
+ dϑγ ∧ ?dϑγ

= −dϑα ∧ ϑβ ∧ ?
(
ϑα ∧ dϑβ

)
+ dϑα ∧ ?dϑα = [1]V − [4]V .

(57)

Accordingly, the KI-Lagrangian (24) can be rewritten as

VKI =
1

2`2
[
2 dϑα ∧ ?dϑα −

(
dϑα ∧ ϑβ

)
∧ ?
(
dϑβ ∧ ϑα

)]
, (58)

and we can read off the ρK coefficients as follows:

ρ1 = 1 + 1 = 2 , ρ2 = 0 , ρ4 = −1 . (59)

By subtracting the adjoint term we would have ρ1 = ρ2 = 0 and ρ4 = 1,
i.e., we would get the von der Heyde Lagrangian [22].

The coefficients of the decomposition into irreducible pieces, by using (52),
turn out to be

a1 = 1 , a2 = 4 , a3 = 1 (60)

(in the von der Heyde case, we have a1 = 1, a2 = −2, a3 = 1). Accordingly,
the KI-Lagrangian can be rewritten in the form

VKI = −1
2
dϑα ∧Hα , (61)

with the translational “excitation”

Hα = − 1
`2

?
(
a1

(1)dϑα + a2
(2)dϑα + a3

(3)dϑα

)
(62)

and the coefficients (60).

The Lagrangian VKI is not locally Lorentz invariant. Rather, a locally
Lorentz invariant theory results from the following choice of the parameters:

a1 = 1 , a2 = −2 , a3 = −1
2
. (63)

This represents the teleparallel equivalent of Einstein’s general relativity.
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4.5 Viable Lagrangians

The form of a general quadratic Lagrangian was displayed in Eqs. (50) and
(46). Various choices of parameters aI or ρK correspond to various telepar-
allel theories of gravity. We call a specific Lagrangian viable if it leads
to a theory which fulfills the following conditions: (i) It has the correct
Newtonian approximation. (ii) It agrees with the first post-Newtonian ap-
proximation of general relativity. (iii) It has the Schwarzschild metric as
exact solution in the case of spherical symmetry.

The question which parameters yield a viable Lagrangian has already been
discussed in the literature, see for example [23, 7, 21, 11]. The result is
that we have viable Lagrangians for a1 = 1 , a2 = −2 , a3 = arbitrary
or ρ4 = 1 , ρ1 = 0 , ρ2 = arbitrary. The arbitrary a3 or ρ2 pieces, re-
spectively, represents the axial square contribution A ∧ ?A of the torsion,
with A := 1

3 ϑ
β ∧ dϑβ and (3)dϑα = eαcA. Deviations between viable

theories due to different axial pieces only show up in fifth order of the post-
Newtonian approximation [23]. Therefore, on a phenomenological level, all
viable teleparallel theories are indistinguishable. In Table 1 we have listed
some quadratic torsion Lagrangians.

It follows from the end of the last subsection, see also (63), that only the
teleparallel equivalent of Einstein’s general relativity is both viable and
locally Lorentz invariant. It has not yet been clearly answered if in this
context local Lorentz invariance is obligatory or merely an aesthetic feature.

GR‖ [5] vdH [22] viable YM YM† KI [2]
a1 1 1 1 1 0 1
a2 −2 −2 −2 1 3 4
a3 −1

2
1 arb. 1 0 1

ρ1 0 0 0 1 1 2
ρ2 −1

2 0 arb. 0 0 0
ρ4 1 1 1 0 −1 −1

Table 1: This table lists the aI and the ρK coefficients for different telepar-
allel Lagrangians. GR‖, spelled out in the first column, represents a viable
gravitational model, the same is true for the von der Heyde case. Obviously,
the Kaniel-Itin Lagrangian, in the framework of the conventional variational
procedure, is not viable. We have KI = YM + YM† and vdH = YM−YM†.
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4.6 Schweizer-Straumann-Wipf amended

Schweizer and Straumann [6] and Schweizer, Straumann, and Wipf [7] in-
vestigated the von der Heyde teleparallelism Lagrangian [22], see also [23].
In particular they showed that, to first post-Newtonian order, the von der
Heyde theory predicts the same gravitational radiation loss as general rel-
ativity. However, they assumed in some places the incorrect commutation
rule δ ? = ?δ. Therefore some equations in these articles must be corrected.
We stress that the corrections do not influence their overall results, though.

We present the corrected formulas of the article by Schweizer, Straumann,
and Wipf [7] in the numbering used there, but in our notation. The cor-
recting terms are printed in bold.

The wrong variation first shows up in the explicit expressions of the canon-
ical energy-momentum tensors derived from the teleparallel version of the
Hilbert-Einstein Lagrangian, εEα , and the difference between the von der
Heyde Lagrangian and the teleparallel version of the Hilbert-Einstein La-
grangian, ∆εα:

εEα = −d
[
ϑβ ∧ ? (dϑβ ∧ ϑα)

]
− dϑβ ∧ ? (dϑα ∧ ϑβ) (2.12),[7]

+
1
2
d
{
ϑα ∧ ?

(
dϑβ ∧ ϑβ

)}
+

1
2
dϑα ∧ ?

(
dϑβ ∧ ϑβ

)
+

1
2
eαc

(
ϑγ ∧ dϑβ

)
∧ ? (dϑγ ∧ ϑβ)

+
1

2
dϑγ ∧ ϑβ ∧ eαc?

(
ϑγ ∧ dϑβ

)
−

1

4
eαc

(
dϑβ ∧ ϑβ

)
∧ ? (dϑγ ∧ ϑγ)

−
1
4
dϑβ ∧ ϑβ ∧ eαc? (dϑγ ∧ ϑγ) ,

∆εα = dϑα ∧ ?
(
dϑβ ∧ ϑβ

)
− 1

2
ϑα ∧ d ?

(
dϑβ ∧ ϑβ

)
(2.13),[7]

−
1
4
eαc

(
dϑβ ∧ ϑβ

)
∧ ? (dϑγ ∧ ϑγ)

−
1

4
dϑβ ∧ ϑβ ∧ eαc? (dϑγ ∧ ϑγ) .

Since the additional terms do not influence the antisymmetric part of ∆εα,
we only need to correct the symmetric part:

∆εsα = −1
2
?

[ (
dϑα ∧ ϑβ + dϑβ ∧ ϑα

)
∧ ? (dϑγ ∧ ϑγ) (3.1),[7]
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−
1
2
ϑβ ∧ dϑγ ∧ ϑγ ∧ eαc?

(
dϑδ ∧ ϑδ

)
+

1
2
dϑγ ∧ ϑγ ∧ ?

(
dϑδ ∧ ϑδ

)
δβα

]
ηβ .

Hence we find the corrected field equation as

εEα −
(λ− 1)

2
?

[ (
dϑα ∧ ϑβ + dϑβ ∧ ϑα

)
∧ ? (dϑγ ∧ ϑγ) (3.3),[7]

−
1

2
ϑβ ∧ dϑγ ∧ ϑγ ∧ eαc?

(
dϑδ ∧ ϑδ

)
+

1
2
dϑγ ∧ ϑγ ∧ ?

(
dϑδ ∧ ϑδ

)
δβα

]
ηβ = −tα .

In our units, we have for the λ-parameter of Schweitzer et al. λ = −2ρ2 =
2
3

(1− a3). Like the terms discussed in [7], the additional terms are at least
quadratic in φαβ (which is the symmetric part of Φαβ in the expansion
ϑα = dxα+Φαβ dxβ), such that the arguments of [7, §3] remain unchanged.

The formulas [7, (4.1)] and [7, (4.6)] have to be corrected similarly as the
last two equations, replacing dϑγ by T γ . Since these explicit expressions are
not used in the remainder of [7, §4], the conclusions remain valid therein.

Finally, the quantities Aµν , Bµν , and Cµν (formulas [7, (5.4b)–(5.4d)]) in
the expansion of the quadratic and higher-order terms

εαQ = ∆εαs +
{
Aβα + Bβα + Cβα

}
(5.4a),[7]

would need corrections. Since these quantities are not used explicitly in [7],
we did not display the exact expressions here.

5 Kaniel-Itin examined

5.1 Lagrangian

We come back to the Kaniel-Itin Lagrangian (24):

VKI =
1

2`2
(
dϑα ∧ ?dϑα + d†ϑα ∧ ?d†ϑα

)
. (64)
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Its Euler-Lagrange equation can be read off from (56) by substituting the
coefficients (59):

−2`2 Σα = 2 ϑβ ∧ d ?
(
ϑα ∧ dϑβ

)
+ 4 d ?dϑα

+ 2eαc
(
dϑβ ∧ ?dϑβ

)
− 4

(
eαcdϑβ

)
∧ ?dϑβ − 2dϑβ ∧ ?

(
ϑα ∧ dϑβ

)
− eαc

[
ϑγ ∧ dϑβ ∧ ? (dϑγ ∧ ϑβ)

]
+ 2

(
eαcdϑβ

)
∧ ϑγ ∧ ? (dϑγ ∧ ϑβ) .

(65)

In the first line, we displayed the second derivatives of the gravitational
potential. As we already saw in Table 1, this field equation is not viable.

If we use the the constrained variations in (64), then we commute δ and the
star ? and find by simple algebra:

`2 δ (VKI + Lmat) = δϑα ∧
(
−�ηα + `2 Σα

)
= 0 . (66)

Since the variations are constrained, we have to turn to our proposition and
to use (35): δϑα = ωβ

α ϑβ, with ω(αβ) = 0. On substitution in (66), the
field equation turns out to be proportional to the antisymmetric part of the
wave equation,

ϑ[α ∧� ηβ] = `2 ϑ[α ∧ Σβ] , (67)

rather than to the wave equation itself. Accordingly, the constrained varia-
tions also lead to a dead end and we have to turn back our attention again
to the KI-field equation (22).

5.2 Decomposition of the field equation

Let us split the full wave equation into its different pieces. For that purpose,
we most conveniently start from the decomposition of the energy-momentum
current as a covector-valued 3-form with 16 independent components:

Σα =
_

Σ↗α +
1
2
ϑα ∧ (eγcΣγ) +

1
4
eαc (ϑγ ∧ Σγ) . (68)

Here
_

Σ↗α is its symmetric traceless part, the second term on the right hand
side its antisymmetric and the last term its trace part, see [12, eq.(5.1.15)].

We come into better known territory if we decompose Σα with respect to
the η-basis:

Σα = Tβα ηβ . (69)
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The T βα’s are the components of the energy-momentum tensor. We can
‘saturate’ the 3-form Σβ by means of the 1-form ϑα:

? (ϑα ∧ Σβ) = ? (ϑα ∧ T γβ ηγ) = T γβ
? (ϑα ∧ ηγ)

= Tαβ
?η = Tαβ

??1 = −Tαβ (70)

or

Tαβ = ? (Σβ ∧ ϑα) = eαc?Σβ . (71)

The analog of (68) is, of course, the following splitting of the energy-
momentum tensor:

Tαβ = {T(αβ) −
1
4
T γγ gαβ}+ T[αβ] +

1
4
T γγ gαβ . (72)

Coming back to (22), after some algebra, we find the following decomposi-
tion:

�ηα −
1
2
ϑα ∧ (eγc�ηγ)− 1

4
eαc (ϑγ ∧�ηγ) = `2

_

Σ↗α , (73a)

1
2
ϑα ∧ ϑβ ∧ (eγc�ηγ) = `2 ϑ[α ∧ Σβ] , (73b)

ϑγ ∧�ηγ + 4λ(x) η = `2 ϑγ ∧ Σγ . (73c)

We can combine the antisymmetric and the symmetric-tracefree part of the
wave equation in order to get its tracefree part. The fine splitting (73)
simplifies to the tracefree and the trace part of the field equation (67):

�ηα −
1
4
eαc (ϑγ ∧�ηγ) = `2 Σ↗α , (74a)

ϑγ ∧�ηγ + 4λ(x) η = `2 ϑγ ∧ Σγ . (74b)

Sometimes it may be useful to rewrite (74a) by using

eαc (ϑγ ∧�ηγ) = −eαc? {? (ϑγ ∧�ηγ)} = −? (? (ϑγ ∧�ηγ) ∧ ϑα)
= −? (ϑγ ∧�ηγ) ∧ ?ϑα = −? (ϑγ ∧�ηγ) ηα ,

(75)

thereby finding [
�+

1
4
?
(
ϑβ ∧�ηβ

)]
ηα = `2 Σ↗α , (76)

or, alternatively: [
�− 1

4
(
eβc�ϑβ

)]
ηα = `2 Σ↗α . (77)
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5.3 Yilmaz-Rosen and Schwarzschild
solution compared

The Yilmaz-Rosen metric and the corresponding orthonormal coframe were
displayed in (2) to (4). In order to compare the Yilmaz-Rosen metric with
the Schwarzschild metric, we transform the former one from the isotropic
coordinates used in (2) into Schwarzschild coordinates and Taylor expand
it:

gYR
00 = 1− 2m

r
+

25
6
m3

r3
+O

(
m4

r4

)
, (78a)

gYR
11 = 1 +

2m
r

+
5m2

r2
+

9m3

r3
+ O

(
m4

r4

)
. (78b)

For the Schwarzschild metric in Schwarzschild coordinates we find:

gSS
00 = 1− 2m

r
(exact) , (79a)

gSS
11 = 1 +

2m
r

+
4m2

r2
+

8m3

r3
+ O

(
m4

r4

)
. (79b)

Their g00 components are equal up to second order. The radial components
g11 begin to differ slightly in the second order. Therefore the Yilmaz-Rosen
solution is consistent with the classical tests of general relativity and can,
in particular, describe the post-Newtonian perihelion advance correctly, see
Synge [24, page 296, footnote 1]. It requires further investigations to decide
whether the two solutions can be observationally distinguished by strong
gravity effects in close binary pulsar systems.

5.4 Yilmaz-Rosen metric motivated

A viable theory of gravitation should be consistent with the local equiva-
lence principle. Let us consider an electromagnetic wave of frequency ω in
the gravitational field of a point mass m. The frequency shift due to the
propagation from a point with radial coordinate r to one with r+ ∆r reads
(c = G = 1):

∆ω
ω

= ∆U = −m∆r
r2

. (80)

According to Mashhoon [25], Yilmaz effectively proposed to extend the
local equivalence principle to a global one. With this idea in mind, we can
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tentatively integrate (80): ∫ r1

r0

dω

ω
=
∫ r1

r0

dU . (81)

We solve the integrals and find

ω(r1)
ω(r0)

= exp[U(r1) − U(r0)] . (82)

Using the Newtonian potential explicitly, U = −mr , and taking the limit
r1 →∞, yields

ω(∞)
ω(r)

= exp
(m
r

)
, and thus

∆t(∞)
∆t(r)

= exp
(
−m
r

)
. (83)

Since ∆t(∞) is not influenced by gravity, one can directly read off

ϑt̂ = e−
m
r dt or g00 = e−

2m
r . (84)

Following the pattern of the components of the Schwarzschild metric, we
now define g11 as the inverse of g00:

g̃ = e−
2m
r dt2 − e 2m

r dr2 − r2
(
dθ2 + sin2 θ dϕ2

)
. (85)

However, the Taylor approximation of this metric (which is not the Yilmaz-
Rosen metric of (2)) reads:

g̃00 = 1− 2m
r

+
2m2

r2
− 4

3
m3

r3
+O

(
m4

r4

)
, (86a)

g̃11 = 1 +
2m
r

+
2m2

r2
+

4
3
m3

r3
+O

(
m4

r4

)
. (86b)

The g̃00 component differs from gSS
00 already to second order. And the devi-

ation of g̃11 from gSS
11 is doubled in comparison to that of the Yilmaz-Rosen

gYR
11 . Therefore, in order to approximate the experimentally well verified

Schwarzschild metric in an optimal way, we choose the forefactors of (85)
as metric components in isotropic coordinates, which eventually leads to
the Yilmaz-Rosen metric:

gYR = e−
2m
r dt2 − e 2m

r

(
dx2 + dy2 + dz2

)
. (87)



Variations in teleparallel theories 22

5.5 Yilmaz-Rosen solution and the vacuum field equa-
tion

The Yilmaz-Rosen metric (2), keeping in mind (3) and (4), fulfills the
tracefree field equation (74a) [or, alternatively, (76) or (77)] with vanishing
source. For a proof compare the corresponding computer algebra program
in Sec. B. As we saw, the Yilmaz-Rosen solution is consistent with the clas-
sical tests of general relativity. However, its integration constant m cannot
be directly identified with the source of a spherical body.

For that reason, we take recourse to the trace equation (74b). In the vacuum
case we find

λ(x) =
1
4
? (ϑγ ∧�ηγ) . (88)

The right hand side of this equation can be easily calculated with our com-
puter algebra program, see also [2]. Therefore the Yilmaz-Rosen metric
solves the vacuum field equation (22) provided the ‘cosmological’ function
is prescribed as follows:

λ(x) = −
(m
r2
e−

m
r

)2

. (89)

Since such an ad hoc structure looks too implausible to us, we can change
horses at this moment: We reject the ‘cosmological’ function of Kaniel-Itin
and put it to zero. Then we can mimic this function λ(x) by means of the
energy-momentum trace −`2 T γγ/4, cf. (74b) and (71):

T γγ =
(

2m
`r2

e−
m
r

)2

. (90)

This energy-momentum trace is plotted in Fig. 1. Therefore, the Yilmaz-
Rosen solution fulfills the field equations

�ηα −
1
4
eαc (ϑγ ∧�ηγ) = 0 and ? (ϑγ ∧�ηγ) = −

(
2m
`r2

e−
m
r

)2

.

(91)

Taking an ideal fluid for the description of matter, then, for vanishing pres-
sure, p = 0, we have T γγ = ρ. Therefore we can understand the above
computation as a matter distribution (90) which can be viewed as (proba-
bly unphysical) star model. The matter of such a star reaches to infinity,
but it decreases exponentially. We find the maximum of the distribution at
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r = m/2, compare with Fig. 1. Most of the star mass is concentrated inside
the Schwarzschild radius rs = 2m. The volume integral over T γγ yields the
total mass m of the star:∫

T γγ dV = 4π

∞∫
0

T γγ r
2 dr =

∞∫
0

16πm2

`2r2
e−

2m
r dr

x:=− 2m
r , dr=

2m
x2 dx

=
8πm
`2

0∫
−∞

ex dx =
8πm
`2

= M , (92)

where M is the mass in conventional units.

As a result, we can interpret the constant m of the Yilmaz-Rosen metric
as the mass of a star, but this mass is distributed in a probably unphysical
way.

6 Conclusion

We posed four questions about the Kaniel-Itin model in Sec. 1. We will try
to answer them in turn:

(i) We can put the energy-momentum 3-form of matter on the right hand
side of the KI-field equation (1), see (22):

[�+ λ(x)] ηα = `2
δLmat

δϑα
=: `2 Σα . (93)

(ii) The Yilmaz-Rosen metric can be accommodated to (93) in the follow-
ing sense: We decompose (93) in vacuum into

−�ηα +
1
4
eαc

(
ϑβ ∧�ηβ

)
= 0 , (94a)

1
4
?
(
ϑβ ∧�ηβ

)
= λ(x) . (94b)

These equations are fulfilled by the Yilmaz-Rosen metric, provided we
prescribe the ‘cosmological’ function λ(x) in the following way:

λ(x) =
1
4
?
(
ϑβ ∧�ηβ

)
= −

(m
r2
e−

m
r

)2

. (95)

If one used a wave equation as field equation, i.e., if in (93) one put
λ(x) = 0, then one could find the Yilmaz-Rosen solution for the matter
distribution T γγ =

(
2m
`r2 e

−mr
)2.
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(iii) There doesn’t exist a consistent variational principle for arriving at
(93). Maybe one is able to find one for the tracefree vacuum equation
(94a).

(iv) The constraints of Kaniel-Itin on the variations amount to getting
rid of the independence of the variations of the metric, provided the
variations of the coframe are prescribed.

Is the model of Kaniel & Itin viable? Well, it is presently in intensive
care . . . And it is a beautiful model anyways.

Acknowledgments: We are grateful to Shmuel Kaniel and Yakov Itin
for interesting discussions and most helpful remarks. We thank Bahram
Mashhoon, Eckehard Mielke, and Yuri Obukhov for useful comments and
hints.

A Hodge star and η-basis

A.1 Elementary relations for the star etc.

We now collect some rules for calculations with the Hodge star, where ψ
and φ are forms of the same degree p (see [12]):

??ψ = (−1)p(n−p)+ind(g) ψ , (96)
?ψ ∧ φ = ?φ ∧ ψ . (97)

The index ind(g) of a metric is the number of minus signs if it is in diagonal
form. Furthermore one has the useful rules

eαc?ψ = ? (ψ ∧ ϑα) . (98a)

eαcψ = (−1)ind(g) ?(ϑα ∧ ?ψ) , (98b)
? (eαcψ) = (−1)p−1 ϑα ∧ ?ψ , (98c)
? (eαc?ψ) = (−1)(p+1)+ind(g) ψ ∧ ϑα . (98d)

Sometimes we also need the formula:

ϑµ ∧ (eµcψ) = pψ . (99)
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With these rules one can determine the η-basis, cf. (29):

η := ?1 =
1
n!
ηα1...αnϑ

α1 ∧ · · · ∧ ϑαn =
1
n!

√
| det gµν| ϑα1 ∧ · · · ∧ ϑαn ,

(100a)

ηα1...αp := ? (ϑα1 ∧ · · · ∧ ϑαp) =
1

(n− p)!η
α1...αp

αp+1...αnϑ
αp+1 ∧ · · · ∧ ϑαn

=

√
| det gµν|

(n − p)! gα1β1 · · ·gαpβp εβ1···βpαp+1···αnϑ
αp+1 ∧ · · · ∧ ϑαn ,

(100b)

ηα1...αn := ?(ϑα1 ∧ · · · ∧ ϑαn)

=
√
| det gµν | gα1β1 · · ·gαnβn εβ1···βn =

1√
| det gµν |

εα1···αn .

(100c)

Two helpful rules, which connect the different elements of the η-basis, read

ηα1...αp
µ = eµcηα1...αp , (101a)

ϑµ ∧ ηα1...αp =
p∑
i=1

(−1)p−igµαiηα1...αi−1αi+1...αp . (101b)

In case of independent variations of the metric components gαβ, we need
the rules

δgαβ = −gαγgδβ δgγδ , (102)

δ [det (gµν)] = det (gµν) gαβ δgαβ . (103)
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A.2 Variation of the η-basis

With these definition and rules, we can compute a general variation of the
η-basis, involving the fields ϑα and gαβ:

δηβ1...βp =
1

(n− p)! δ
(
ηβ1...βp

βp+1...βnϑ
βp+1 ∧ · · · ∧ ϑβn

)
(100b)

=
1

(n− p)! η
β1...βp

βp+1...βnδ
(
ϑβp+1 ∧ · · · ∧ ϑβn

)
+

1
(n − p)!

× δ
(√
| det gµν| gα1β1 · · ·gαpβp εα1···αpβp+1···βn

)
ϑβp+1 ∧ · · · ∧ ϑβn

(26),(103),
(102),(100b)=

n− p
(n− p)! η

β1...βp
βp+1βp+2...βn

(
δϑβp+1

)
∧
(
ϑβp+2 ∧ · · · ∧ ϑβn

)
+

(
1
2
gκληβ1...βp −

p∑
i=1

gκβiηβ1...βi−1λβi+1...βp

)
δgκλ

(100b)
= δϑβp+1 ∧ ηβ1...βp

βp+1 +
(

1
2
gκληβ1...βp

−
p∑
i=1

(−1)p−igκβigλρeρcηβ1...βi−1βi+1...βp

)
δgκλ

(101b)
= δϑβp+1 ∧ ηβ1...βp

βp+1

+
(

1
2
gκληβ1...βp − gλρeρc

(
ϑκ ∧ ηβ1...βp

))
δgκλ .

(104)

Hence

δηβ1...βp = δϑµ ∧
(
eµcηβ1...βp

)
+
(
ϑ(κ| ∧ ηβ1...βp|λ) − 1

2
gκληβ1...βp

)
δgκλ .

(105)
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A.3 Deduction of (33)

We start with (31). We abbreviate ψp := ϑβ1 ∧ · · · ∧ ϑβp and get, using the
variation (105) of ηβ1...βp :

ψp ∧ δ?φ = δφ ∧ ηβ1...βp − δψp ∧ ?φ+ φ ∧ δϑµ ∧ ηβ1...βp
µ

+ φ ∧
(
ϑκ ∧ ηβ1...βpλ − 1

2
gκληβ1...βp

)
δgκλ

(100b), (97)
= ψp ∧ ? (δφ) − δψp ∧ ?φ+ φ ∧ δϑµ ∧

(
eµcηβ1...βp

)
+
(
φ ∧ ϑκ ∧

(
gλρeρcηβ1...βp

)
− 1

2
ψp ∧ gκλ ?φ

)
δgκλ

= ψp ∧
(
? (δφ)− 1

2
?φ gκλ δgκλ

)
− δϑµ ∧ (eµcψp) ∧ ?φ

+ (−1)p
(
δϑµ ∧ φ ∧ (eµc?ψp) + gλρeρc (φ ∧ ϑκ) ∧ ?ψp δgκλ

)
= ψp ∧

(
? (δφ)− 1

2
?φ gκλ δgκλ

)
+ δϑµ ∧

(
eµc (φ ∧ ?ψp)

− (eµcφ) ∧ ?ψp − eµc (ψp ∧ ?φ) + (−1)pψp ∧ (eµc?φ)
)

+ ψp ∧ ϑλ ∧ ? (φ ∧ ϑκ) δgκλ
(97)
= ψp ∧ ? (δφ)− ψp ∧ ? (δϑµ ∧ (eµcφ)) + ψp ∧ δϑµ ∧ (eµc?φ)

− ψp ∧
1
2
?φ gκλ δgκλ + ψp ∧ ϑλ ∧ gκρeρc (?φ) δgκλ .

(106)

Since ψp := ϑβ1 ∧· · ·∧ϑβp is constructed with p arbitrary ϑα’s, we conclude
for an arbitrary p-form φ:

(δ? − ?δ)φ = δϑα ∧ (eαc?φ)− ?
[
δϑα ∧ (eαcφ)

]
+ δgαβ

[
ϑ(α∧(eβ)c?φ) − 1

2
gαβ ?φ

]
.

(107)

For the special choice of an orthonormal coframe, we have δgαβ = 0. In
this case the two last summands vanish:

(δ? − ?δ)φ = δϑα ∧ (eαc?φ) − ?
[
δϑα ∧ (eαcφ)

]
. (108)
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B Computer algebra program

The following Reduce program was written with the help of the Excalc pack-
age, see [26, 27].5 It verifies (i) the decompositon (58) of the KI-Lagrangian,
(ii) that the Yilmaz-Rosen metric fulfills the tracefree KI-vacuum field equa-
tion (74a) and (77), and (iii) the validity of Eq. (89).

% file kaniti.exi, 1998-01-11, fwh+fg %in "kaniti.exi";

load_package excalc$

%
% Basic definitions:
%

pform psi=0, r=0, lam=0$
fdomain psi=psi(x,y,z), r=r(x,y,z), lam=lam(x,y,z)$

coframe o(t) = psi * d t + a*sin(x)* d x,
o(x) = (1/psi) * d x + b*sinh(z)*d y,
o(y) = (1/psi) * d y,
o(z) = (1/psi) * d z with signature(+1,-1,-1,-1)$

frame e$
sgn :=-1$

%
% Checking the decompositon (58) of the KI-Lagrangian
%

pform v0rumpf4=4, v1rumpf4=4, v2rumpf4=4, v3rumpf4=4,
v4rumpf4=4, vki4=4$

v0rumpf4 := o(a) ^ # o(-a)/4$

5This program works properly only with a new patch of Excalc, fixing an earlier bug
on the hodge dual of scalars. Older versions of Excalc need as additional input the
following function which should be put in after Excalc has been loaded:
symbolic procedure dual0 u;

(multpfsq(mkwedge (’wedge . basisforml!*),

simpexpt list(mk!*sq(absf!* numr x ./

absf!* denr x),’(quotient 1 2))))

where x = simp!* detm!*;
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v1rumpf4 := d o(a) ^ # d o(-a)$
v2rumpf4 := (d o(-a) ^ o(a)) ^ # (d o(-b) ^ o(b) )$
v3rumpf4 := (d o(a) ^ o(b)) ^ # (d o(-a) ^ o(-b))$
v4rumpf4 := (d o(-a) ^ o(b)) ^ # (d o(-b) ^ o(a) )$

vki4 := rho0 * v0rumpf4 + rho1 * v1rumpf4 + rho2 * v2rumpf4
+ rho3 * v3rumpf4 + rho4 * v4rumpf4;

rho0 := 0; rho1 := 2; rho2 := 0; rho3 := 0; rho4 :=-1;

diff := vki4 - ( d o(a) ^ #( d o(-a))
+ #(d (# o(a))) ^ #(# (d # o(-a))) );

diff := diff;

% diff has to vanish. Note that our check is not for
% a general coframe. In the following we choose the
% Yilmaz-Rosen coframe and set a=0, b=0:

a:=0$
b:=0$

r**2 := (x**2+y**2+z**2)$
@(r,x):= x/r; @(r,y):= y/r; @(r,z):= z/r$
psi := exp(-m/r)$

pform dalembertcof1(a)=1, dalemberteta3(a)=3,
kifeqtrfreea3(a)=3, kifeqtrfreeb3(a)=3$

dalembertcof1(a):= -d(#(d(# o(a) ))) - #(d(#(d o(a) )));
dalemberteta3(a):= -d(#(d(#(# o(a))))) - #(d(#(d(#o(a)))));

%
% Checking the vacuum field equation (1) of Kaniel & Itin
%

% lhs of Eq.(74a)
kifeqtrfreea3(a) := dalemberteta3(a) - e(a) _|

( o(b) ^ dalemberteta3(-b) )/4;

% lhs of Eq.(77)
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kifeqtrfreeb3(a) := dalemberteta3(a) - ( e(-b) _|
(dalembertcof1(b))/4 ) ^ # o(a);

% Eq.(88)
lam := #(o(b) ^ dalemberteta3(-b))/4;

% Eq.(89)
lam - ( - ((m/r**2)*e**(-m/r))**2);

% Eq.(90)
energytrace := - 4 * lam / ell**2;

end$
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Figure 1: The prescribed matter distribution `2 T γγ =
(

2m
r2 e
−mr
)2. Most of

the matter is inside the Schwarzschild radius rs = 2m.


