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Length measurement in accelerated systems
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Abstract. We investigate the limitations of length measurements by accelerated observers inMinkowski
spacetimebrought about via the hypothesis of locality, namely, the assumption that an accelerated observer
at each instant is equivalent to an otherwise identical momentarily comoving inertial observer. We find
that consistency can be achieved only in a rather limited neighborhood around the observer with linear
dimensions that are negligibly small compared to the characteristic acceleration length of the observer.

Keywords: relativity, acceleration, length measurement
PACS: 03.30.+p, 04.20.Cv

1 Introduction

The primary measurements in physics are the determinations of spatial distances and temporal
durations that are associated with the effective establishment of a sufficiently local frame of
reference. This process involves macrophysical determinations associated with the fact that
physical observers and their frames of reference obey the laws of classical (i.e. nonquantum)
physics. The basic nongravitational laws of physics refer to ideal inertial observers; their
measurements are briefly discussed in Section 2. On the other hand, actual observers are
all (more or less) noninertial, i.e. accelerated. In fact, most experiments are performed in
laboratories fixedon theEarth, which– amongothermotions – rotates about its axis; therefore, it
is necessary to give a theoretical description of themeasurements of accelerated observers. This
is done via the hypothesis of locality described in Section 3. This hypothesis in effect replaces
the accelerated observer by a continuous infinity of hypotheticalmomentarily comoving inertial
observers. Sections 4 and 5 deal with the measurement of length by observers undergoing
translational and rotational accelerations, respectively. Section 6 contains a discussion of our
results.

2 Simultaneity and length measurements

We begin by reviewing some basic concepts and terms about length measurement that are
commonly used for inertial systems in special relativity (SR).
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An event in SR is associated with a single location in space and a single instant in time. The
position of an event is defined to be the coordinate label on a rigid ruler that extends from the
spatial origin to the event; this notion is then naturally extended to the spatial coordinates that
characterize the location of the event in space. The ruler is envisioned to extend indefinitely
from some chosen origin. Such a choice is only possible in a global inertial coordinate frame,
which can be defined only in Minkowski spacetime for inertial observers. The time of an event
is most naturally defined as the reading on a clock located at the event’s position at the instant
at which the event occurs. The rulers and clocks used by an inertial observer are at rest relative
to the observer. Time is somehow a difficult notion to grasp, especially when it becomes frame
dependent under Lorentz transformations [1].

Simultaneity
All inertial observers in SR are assumed to be either actual observers or measuring devices
that use synchronized clocks. To determine the time of a distant event, an observer corrects
for the travel time of a signal originating at the event. To perform this correction the observer
has to know the distance to the event by either determining the event’s spatial coordinates in
its reference frame or by prior measurement of the distance. The determination of the location
and the time of an event are independent of the position of an observer compared to all other
observers in the same reference frame.
The time ordering of the events depends on the relative velocity of the inertial observers

and the relative position of the events, but not the positions of the observers since global
synchronization of clocks is assumed. The invariance of the speed of light c has an additional
immediate implication: Two events at different locations that occur at the same time in a given
inertial frame are not simultaneous in any other inertial frame. Moreover, v < c for any
observer implies that the causal sequence of events is independent of the inertial observers.

Length measurements
An inertial frame is globally defined, since the lifetime of clocks can be ideally extended
indefinitely and the rulers ideally extend indefinitely in space. Hence, lengths are simply
determined by the differences of the coordinate positions of the endpoint of line segments at
the same time in such a reference frame, i.e. L = |�x2 − �x1| is the length of the straight line
segment extending from �x1 to �x2. In effect, the homogeneity and isotropy of spacetime in an
inertial frame allows us to sum intervals of time and space corresponding to the use of finite
clocks and rulers.
A ruler of length l0 at rest in an inertial frame contracts by a factor of

γ−1 =
√

1 − β2 (1)

as measured by standard observers at rest in an inertial frame moving with speed v = βc along
the direction defined by the ruler; this effect is known as the Lorentz-Fitzgerald contraction.
It is possible to define the distance between two inertial observers using electromagnetic

signals: One observer at rest at �x1 in some inertial frame sends out a light signal towards
a second (possibly moving) observer. The second observer at �x2 sends a light signal back
immediately after reception of the first light signal. The first observer determines the time
difference ∆t between sending the first light signal out and receiving the second light signal
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at its position. The length between the observers is then given by

L∗ :=
1
2
c∆t . (2)

This length definition relies only upon the assumption that the speed of light is constant and
equal to c in all inertial reference frames; moreover it is consistent with the measurement of
length based on rulers (i.e. L∗ = L).

Translational and rotational accelerations
An inertial observer is an ideal that cannot be realized in practice. All actual observers are
accelerated. To develop the theory of accelerated systems, let us define an orthonormal frame
field eα for an accelerated observer. The components of the frame field are λµ

(α) := eµ
α,

where eα = eµ
α∂µ. We choose e0 to be the unit vector uµ(τ) := 1

c
dxµ

dτ that is tangent to the
worldline at a given eventxµ(τ) andwe parametrize the remaining frame vectors characterizing
the spatial directions also by τ , which is a temporal parameter measured along the accelerated
path by the standard (static inertial) observers in the underlying global inertial frame according
to the formula τ =

∫ √
1 − β2(t) dt.

The condition of orthonormality for the frame field reads

ηµνλ
µ
(α)(τ)λν

(β)(τ) = ηαβ = diag(−1,+1,+1,+1) . (3)

The derivative of the frame field along the accelerated path can be expressed in the frame
basis:

dλµ
(α)

dτ
= Φα

β(τ)λµ
(β) . (4)

Using the orthonormality condition, we find that Φαβ is antisymmetric

Φαβ(τ) = −Φβα(τ) ; (5)

we therefore define

Φαβ :=




0

−�a/c

∣∣∣∣∣∣∣∣
�a/c

�Ω


 , (6)

where Φ0i = ai/c and Φij = εijkΩk. Here �a represents the “electric” component and is the
translational acceleration, while �Ω represents the “magnetic” component and is the rotational
frequency of the local spatial frame (with respect to the local nonrotating, i.e. Fermi-Walker
transported, axes).
Let us now introduce a geodesic coordinate system Xµ in the neighborhood of the ac-

celerated path. At any time τ along the accelerated worldline (see Fig. 1), the hypersurface
orthogonal to the worldline is Euclidean space and one can describe some event on this hyper-
surface at xµ to be at Xµ, where xµ and Xµ are connected via X0 = cτ and

xµ = x̄µ(τ) + Xiλµ
(i)(τ) , (7)
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Fig. 1 An event xµ as seen by
the observer x̄µ(τ0) with its frame
field λµ

(α). The geodesic coordi-

nate system Xµ = (cτ, �X) is lim-
ited in space: If we go beyond the
time τ1, for example, coordinate as-
signments would start to overlap, as
shown for the time τ2. Since this
cannot be accepted, spatial coordi-
nates have to be limited in general.
Thus the geodesic coordinate system
is in general valid in a sufficiently
narrow worldtube along the timelike
worldline of the observer

where x̄µ represents the position of the accelerated observer.
From (7) we can derive (compare also with [2] and references therein) the relation

dxµ =
1
c

dx̄µ

dτ
dX0 + dXiλµ

(i) + Xidλµ
(i)

= λµ
(0)dX

0 + dXiλµ
(i) +

1
c
Xi dX0

[
Φi

0λµ
(0) + Φi

jλµ
(j)

]

=

[(
1 +

�a · �X

c2

)
λµ

(0) +
1
c

(
�Ω × �X

)i

λµ
(i)

]
dX0 + λµ

(i) dX
i , (8)

and hence the metric is

ds2 = ηµν dxµ dxν

= −


(

1 +
�a · �X

c2

)2

− 1
c2

(
�Ω × �X

)2


 (dX0)2

+
2
c

(
�Ω × �X

)
· d �XdX0 + δij dX

i dXj . (9)

Since we started from a global inertial frame in Minkowski spacetime, the spatial part of the
line element yields Euclidean space with its origin occupied by the accelerated observer.
This set of coordinates is limited. If we follow the above procedure for two different times

of the accelerated observer, our new coordinates may not be unique, see Fig. 1. Since we
cannot accept two sets of coordinates in the same system for one event, we have to require
that the laboratory be sufficiently small. The charts for our coordinates cannot be global for
accelerated observers. In fact, such geodesic coordinates are admissible as long as(

1 +
�a · �X

c2

)2

>
1
c2

(
�Ω × �X

)2
. (10)
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Thus in the discussion of the admissibility of the geodesic coordinates, two independent accel-
eration lengths must be considered: the translational acceleration length c2/a and the rotational
acceleration length c/Ω that appear in Eq. (10).
The acceleration radii are connected with the domain of applicability of the geodesic co-

ordinate system around the reference accelerated observer. It turns out that these acceleration
lengths have another independent and much more fundamental significance in terms of the
local measurements of the accelerated observer following the reference trajectory [3, 4]. This
basic issue is discussed in Section 3.
It is important to remark here that one may use other (more complicated) accelerated co-

ordinate systems; however, these have their attendant difficulties [5]. A discussion of these
problems is beyond the scope of this paper; therefore, we limit our considerations here to
geodesic coordinate systems.

Length scales for accelerated observers
The translational and rotational “accelerations” ai and Ωk depend in general on both the
velocity and the acceleration of the observer. We therefore construct the scalar invariants
of the antisymmetric tensor Φαβ , which are then independent of the (coordinate-dependent)
velocity:

I =
1

2c2
ΦαβΦαβ = −a2

c4
+

Ω2

c2
,

I∗ =
1

4c2
Φ∗

αβΦαβ = − �a

c2
·
�Ω
c

, (11)

where Φ∗
αβ is the dual of Φαβ , i. e. Φ∗

αβ = εαβγδΦγδ . We define the finite lengths |I|−1/2 and

|I∗|−1/2 as the proper acceleration lengths.
Let us now see how long these lengths are in typical situations on the Earth. For the

translational acceleration length on the Earth’s surface we get (a = 9.8m/s2,Ω = 0)

c2

a
= 9.46 · 1015m ≈ 1 ly , (12)

and for the rotational acceleration (a = 0,Ω = Ω⊕) the result is

c

Ω
= 4.1253 · 1012m ≈ 27.5AU . (13)

Thus farwehavediscussed space-timemeasurements carried out by inertial observers. Wemust
now consider the results of measurements carried out by an accelerated observer; moreover,
it is important to see how such measurements are affected by the presence of an acceleration
length L.

3 The hypothesis of locality

In a spacetime diagram an inertial observer can be portrayed as a straight line. An observer that
is linearly accelerated at some time will have a curved worldline. What will this accelerated
observer measure? Typically, the Hypothesis of Locality [3, 4] is tacitly assumed:
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An accelerated observer measures the same physical results as a standard inertial
observer that has the same position and velocity at the time of measurement.

The curved path of the observer is substituted by the straight line tangential to the curve at the
time of measurement. The radius of curvature of the accelerated worldline is characterized by
the acceleration lengthL; the hypothesis of locality therefore assumes that locallyL = ∞. It is
necessary to investigate if it is all right to reduce all measurements to the linear approximation,
especially if we leave the infinitesimal neighborhood of an event and considering that realistic
measuring devices are not infinitesimal.
The hypothesis of locality originates fromNewtonianmechanics of classical point particles.

The state of such a particle is given at each instant of time by its position and velocity. It follows
that the hypothesis of locality is evidently valid in Newtonian mechanics and this explains the
fact that no new physical assumption is needed in Newtonian physics to deal with accelerated
systems.
It is important to recognize that the hypothesis of locality is crucial for the physical im-

plementation of Einstein’s heuristic principle of equivalence. This cornerstone of general
relativity and the hypothesis of locality together imply that an observer in a gravitational field
is pointwise inertial.
A restricted hypothesis of locality is the so-called clock hypothesis, which is a hypothesis

of locality only concerned about the measurement of time. This hypothesis implies that a
standard clock in fact measures τ , dτ =

√
1 − β2(t) dt, along its path; τ is then the proper

time along this accelerated path. In the following sections, we set τ = 0 when t = 0.
According to most experiments, the hypothesis of locality seems to be true. No experiment

has yet shown the hypothesis of locality to be violated (outside of radiation effects). The main
reason for this finding is that all relevant length scales in feasible experiments are very small in
relation to the huge acceleration lengths of the tiny accelerations we usually experience. For
instance, if we take the wavelength of light for a typical laboratory optics experiment, λ ∼
10−7m, the factor λ/L is around 10−23 and 10−20 for translational and rotational accelerations,
respectively. As long as all length scales are very small compared to the acceleration lengths, it
seems reasonable to assume that differences between observations by accelerated and comoving
inertial observers will also be very small.
It is the purpose of this paper to examine critically certain basic aspects of the hypothesis of

locality in connection with the measurements of accelerated observers. To this end, we study
in this work the measurement of length by accelerated observers. This choice is based on two
considerations: (1) length measurement is a subject of crucial significance for a geometric
theory of spacetime structure and (2) the hypothesis of locality must be applied not just at one
event but at a continuous infinity of events for the determination of a finite length.
For practical purposes, the hypothesis of locality replaces the accelerated observer by an

infinite sequence of otherwise identical momentarily comoving inertial observers. Every in-
ertial observer is endowed with a natural orthonormal tetrad frame in Minkowski spacetime.
Therefore, the same holds for an accelerated observer by the hypothesis of locality. It is then
natural to interpret the results of Section 2 as follows: The accelerated observer carries an
orthonormal frame λµ

(α)(τ) along its trajectory such that at each instant of its proper time τ ,
the accelerated observer’s temporal axis is λµ

(0) and the spatial axes λµ
(i), i = 1, 2, 3, char-

acterize the 3-dimensional Euclidean space of this observer. Thus in the geodesic coordinate
system adapted to this tetrad frame, the spatial part of the flat spacetime metric is always the
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3-dimensional Euclidean space as in Eq. (9). Moreover, the local acceleration scales associ-
ated with the measurements of the observer are defined via Eqs. (4)–(6) and (11). These have
a physical significance that is distinct from the acceleration radii that mark the limits of the
validity of the accelerated coordinate system as can be made clear by a simple example: For
observers fixed on the rotating Earth, Earth-based coordinates are essentially valid only up to
the light cylinder parallel to the Earth’s axis and at a radius of c/Ω⊕ ≈ 28AU from it. This light
cylinder, however, has no influence on the local measurements of the observer and the recep-
tion of astronomical data on the Earth. In contrast, the fact that such an observer is noninertial
and therefore has local acceleration scales associated with it does affect its measurements as
demonstrated by the phenomenon of spin-rotation coupling [6].
In our description of accelerated observers, an observer following a straight worldline in

an inertial frame is not necessarily inertial. Consider, for example, an accelerated observer
at rest in Minkowski spacetime that refers its observations to rotating axes. The observer’s
worldline is simply parallel to the time axis and the limitation of a geodesic coordinate system
established around this observer does not arise from what is depicted in Fig. 1, but stems from
the fact that observers at rest in the rotating frame would be moving relative to the reference
observer at less than the speed of light only within its light cylinder. It follows that in the
treatment of accelerated (i.e. noninertial) observers, the worldline as well as the spatial frame
along the worldline must be taken into account. A more satisfactory frame bundle approach is
indeed possible [2, 7], but such a treatment is beyond the scope of the present paper.
In the following sections, we consider specific thought experiments involving the measure-

ment of distance between two accelerated observers.

4 Linear acceleration

Consider two observers that are at rest in an inertial frame and a distance l apart, see [3, 8]. At
t = 0 they both start to accelerate the sameway, according to a preplanned acceleration profile.
This type of thought experiment has been considered before [9]. We put one of the objects
at the origin of our inertial coordinate system and the other one at (0, 0, l), and we assume
that they accelerate linearly along the z-direction. For later calculations, we will specify the
acceleration to be uniform along the z-axis, see Fig. 2. To avoid unphysical situations, we
assume that the acceleration is always turned off at some finite time t > 0.
An inertial observer at rest in the inertial frame describes the positions of the two accelerating

objects to be

zp1(t) =

t∫
0

v(t) dt , zp2(t) = l +

t∫
0

v(t) dt . (14)

Hence, the distance between the accelerating objects stays constant, since zp2(t)− zp1(t) = l.
Let us now investigate what comoving observers would measure for the distance between

p1 and p2. The hypothesis of locality implies that both of the accelerated observers pass
through the same infinite sequence of momentarily comoving inertial systems. The Lorentz
transformation between the original inertial system and one of the comoving systems gives

l′ =
1√

1 − v2

c2

l = γl , (15)
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Fig. 2 Two observers a distance l apart start ac-
celerating from rest with identical acceleration
profiles along the z-axis

which we generalize to

l′ =
1√

1 − v2(t)
c2

l = γ(t)l . (16)

This has a simple physical interpretation: The Lorentz-Fitzgerald contracted distance between
our accelerated objects is always l, hence the actual distance between them must be larger by
the momentary Lorentz γ-factor. It is important to recognize that p1 and p2 could be any two
points in a measuring device that is accelerated.
Specifically, let us imagine a set of accelerated observers populating the distance between

p1 and p2 undergoing exactly the same motions as p1 and p2. At any given time t̂, each of
these observers is pointwise equivalent to a comoving inertial observer in accordance with the
hypothesis of locality. The Lorentz transformation connecting the global background inertial
frame with the rest frame of a comoving inertial observer at (0, 0, ẑ) is given by

c(t − t̂) = γ̂(ct′ + β̂z′) , (17)

x = x′ , y = y′ , z − ẑ = γ̂(z′ + cβ̂t′) , (18)

where β̂ and γ̂ refer to the common speed of the system at t̂. The consideration of length
measurements of the standard observers in their inertial frames then leads to Eq. (16), i. e.
the events p1 : (ct̂, 0, 0, ẑ1) and p2 : (ct̂, 0, 0, ẑ2) in the background global frame correspond
to p1 : (ct′1, 0, 0, z

′
1) and p2 : (ct′2, 0, 0, z

′
2), where ct

′
1 = γ̂β̂(ẑ − ẑ1), z′

1 = −γ̂(ẑ − ẑ1),
ct′2 = γ̂β̂(ẑ − ẑ2), and z′

2 = −γ̂(ẑ − ẑ2); therefore, z′
2 − z′

1 = l′ = γ̂(ẑ2 − ẑ1) = γ̂l.
For an alternative description, we should be able to replace the infinite sequence of inertial

systems by one system in a continuously moving frame; for example, a coordinate system that
has at its spatial origin one of the accelerating objects (p1). To this end, it is useful to introduce
at this point the simplifying assumption that the observers are subject to uniform acceleration
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g. Observer p1 thus follows a hyperbolic spacetime trajectory given by

t =
c

g
sinh

(gτ
c

)
, x = y = 0 , z = z0 +

c2

g

(
−1 + cosh

(gτ
c

))
, (19)

where z0 = 0 and τ is the proper time along the trajectory such that τ = 0 at t = 0. The speed
of the observer is thus v = c tanh

(
gτ
c

)
. We can construct an orthonormal tetrad frame along

the reference trajectory such that at each instant it would coincide with the frame field of the
momentary Lorentz transformation (17) and (18),

λµ
(0) = (γ, 0, 0, γβ) , (20a)

λµ
(1) = (0, 1, 0, 0) , (20b)

λµ
(2) = (0, 0, 1, 0) , (20c)

λµ
(3) = (γβ, 0, 0, γ) , (20d)

where β = tanh
(

gτ
c

)
and γ = cosh

(
gτ
c

)
. It follows from the hypothesis of locality that this

is in fact the tetrad frame of the accelerated observer. Using this tetrad frame in Eqs. (4)–(6)
reveals that�a = (0, 0, g) and �Ω = �0, so that the only proper acceleration length associated with
the observer is L = c2

g , as expected. The spatial frame is in fact nonrotating, i. e. it is Fermi-
Walker transported along the trajectory, so that the geodesic coordinate system constructed on
this basis is a Fermi system.
According toEq. (7), the relationshipbetween theglobal inertial coordinatesxµ =(ct, x, y, z)

and Fermi coordinates Xµ = (cT,X, Y, Z) along p1 is given by

ct =
(
Z +

c2

g

)
sinh

(
gT

c

)
, x = X, y = Y ,

z =
(
Z +

c2

g

)
cosh

(
gT

c

)
− c2

g
+ z0 ,

(21)

so that p1 is always at the spatial origin of the Fermi system with T = τ and z0 = 0. If the
positions of the two accelerating objects in the original inertial frame at a time t̄ are given
by p1 : (ct̄, 0, 0, z̄) and p2 : (ct̄, 0, 0, l + z̄), then the corresponding positions in the moving
coordinate system are p1 : (cT, 0, 0, 0) and p2 : (cT2, 0, 0, L). From Eq. (21) we get the
relations

ct̄ =
c2

g
sinh

(
gT

c

)
, z̄ =

c2

g

[
cosh

(
gT

c

)
− 1
]

(22)

and

ct̄ =
(
L +

c2

g

)
sinh

(
gT2

c

)
, z̄ + l =

(
L +

c2

g

)
cosh

(
gT2

c

)
− c2

g
. (23)

Using cosh2 Θ − sinh2 Θ = 1 in the last equation yields

(
L +

c2

g

)2

=
(
l +

c2

g
+ z̄

)2

− c2t̄2 ; (24)
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then, substituting for t̄ and z̄ + c2

g using (22) leads to

(
L +

c2

g

)2

= l2 + 2l
c2

g
cosh

(
gT

c

)
+
(
c2

g

)2

, (25)

and this gives after some algebra

L =
c2

g

[√
1 + 2εγ + ε2 − 1

]
=

l′

γε

[√
1 + 2εγ + ε2 − 1

]
(26)

with ε = l/c2
g
and γ = cosh

(
gT
c

)
. The parameter ε compares the length lwith the acceleration

length in this case. For ε � 1, Eq. (26) implies that L and l′ can be very different; therefore,
let us assume that ε 	 1. We now can compare L with l′, after applying the approximation√

1 + x = 1 + 1
2x − 1

8x
2 + 1

16x
3 + O(x4) for |x| < 1,

L

l′
= 1 − 1

2
β2γε +

1
2
β2γ2ε2 + O(ε3) . (27)

The lengthLmeasured from p1 in this accelerated frame differs from the length l′measured in a
comoving inertial frame, if the length l is not negligibly small in comparison to the acceleration
length.
We now can change positions in this accelerated frame and investigate what length is mea-

sured from position p2. Observer p2 also follows a hyperbolic trajectory given by Eq. (19) with
z0 = l. The corresponding transformation between inertial coordinates and Fermi coordinates
is given by (21) with z0 = l. If the positions of the two accelerating objects in the original in-
ertial frame at a time t̄ are now given as before by p1 : (ct̄, 0, 0, z̄) and p2 : (ct̄, 0, 0, l+ z̄), then
the corresponding positions in the moving Fermi coordinate system are p1 : (cT1, 0, 0,−L′)
and p2 : (cT, 0, 0, 0). From Eq. (21) we get the relations

ct̄ =
(
c2

g
− L′

)
sinh

(
gT1

c

)
, z̄ − l =

(
c2

g
− L′

)
cosh

(
gT1

c

)
− c2

g
(28)

and just as in Eq. (22),

ct̄ =
c2

g
sinh

(
gT

c

)
, z̄ =

c2

g
cosh

(
gT

c

)
− c2

g
. (29)

Using cosh2 Θ − sinh2 Θ = 1 in Eq. (28) yields

(
c2

g
− L′

)2

=
(
c2

g
+ z̄ − l

)2

− c2t̄2 , (30)

which after substituting for t̄ and z̄ + c2

g using (29) leads to

(
c2

g
− L′

)2

= l2 − 2l
c2

g
cosh

(
gT

c

)
+
(
c2

g

)2

, (31)
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and this gives after some algebra

L′ =
c2

g

[
1 −

√
1 − 2εγ + ε2

]
=

l′

γε

[
1 −

√
1 − 2εγ + ε2

]
(32)

with ε = l/c2
g
and γ = cosh

(
gT
c

)
as above. Again, for ε 	 1 let us now compare L′ with l′,

after applying the approximation
√

1 − x = 1 − 1
2x − 1

8x
2 − 1

16x
3 + O(x4) for |x| < 1,

L′

l′
= 1 +

1
2
β2γε +

1
2
β2γ2ε2 + O(ε3) . (33)

The length L′ measured from p2 in this accelerated frame differs from the length L (in fact, L′

is larger than L for 0 < ε < 1) and from the length l′, if the length l is not negligible compared
to the acceleration length.
Let us now take another approach, based on our operational definition of length using

electromagnetic signals: We want to measure the length by timing light rays. The relation
between the measured time and the length can then be derived from the metric (9) for our case:

ds2 = −
(

1 +
gX3

c2

)2

(dX0)2 + δijdX
idXj . (34)

For light rays along the X3- or Z-axis, ds2 = 0, dX1 = 0, and dX2 = 0, and therefore:

dZ = ±
(

1 +
gZ

c2

)
c dT . (35)

After integration we get

cT + constant = ±c2

g
ln
(

1 +
gZ

c2

)
. (36)

From the viewpoint of observer p1, i.e. in the Fermi frame in which p1 is at rest, let us suppose
that the signal is emitted at time T−

1 from Z = 0 such that the light travels the distance
Z : 0 → L and arrives at time T2 at p2, since that is the position of p2 : (T2, 0, 0, L) when
the light arrives, i.e. c ln(1 + gL/c2) = g(T2 − T−

1 ), and then back along Z : L → 0, if we
assume that the light is reflected by p2 without delay so that it returns to p1 at T

+
1 such that

c ln(1 + gL/c2) = g(T+
1 − T2). Let us note that T2 = (T+

1 + T−
1 )/2, which is the standard

synchronization condition for distant events. With L∗ = c(T+
1 − T−

1 )/2 = c2
/g ln(1 + gL/c2)

for the length determined by light-ray timing, we find that L∗ < L, where L is determined by
rulers in the accelerated system based on the hypothesis of locality; specifically, we get using
(27)

L∗ =
l′

γε
ln
(

1 + γε − 1
2
γ2β2ε2 + O(ε3)

)
. (37)

With ln(1 + x) = x − 1
2x

2 + O(x3) for −1 < x ≤ 1, we finally find

L∗

l′
= 1 − 1

2
γε(1 + β2) + O(ε2) , (38)
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yet another result for the measured length if ε �≈ 0.
From the viewpoint of observer p2, i.e. in the Fermi frame in which p2 is at rest, the thought

experiment can be repeated by sending the light signal from p2 to p1 and back without delay;
in this case, a similar analysis holds except that we have to useL′ instead ofL in the expression
corresponding to L∗. The calculation for this case yields using (33)

L′∗

l′
= 1 − 1

2
ε

γ
+ O(ε2) . (39)

It follows from these results that consistency can be achieved only if ε = gl/c2 	 1 is below
the level of sensitivity of the measurements of the accelerated observers.
It is possible to generalize our approach to arbitrary accelerated systems: Imagine two

observers that are initially at rest in an inertial frame and subsequently move in exactly the
same way for t > 0. A vector analogue of Eq. (14) then implies that �xp2(t) − �xp1(t) =
�xp2(0) − �xp1(0), so that the Euclidean length between them remains the same as measured
in the inertial frame. The determination of the distance between them as measured by the
accelerated observers can be discussed as in the foregoing treatment. On the other hand, it is
more interesting to consider a situation where the distance between the accelerated observers
is defined along a curve rather than a straight line such as for two points fixed on the rotating
Earth. Therefore, in the following section we consider rotating observers and assume that the
rate of rotation is uniform for the sake of simplicity.

5 Rotational acceleration

We consider two observers O1 and O2 that rotate uniformly with angular velocity Ω0 on a
circle with radius r and with a constant angleΦ between them as in Fig. 3. An inertial observer
at rest in the global inertial frame would describe the arclength between the observers to have
a constant length of l = rΦ.

Fig. 3 Two observers uni-
formly rotating on a circle of
radius r with azimuthal angles
φ1 = Ω0t and φ2 = Ω0t + Φ.
An event can be described in the
inertial frame (ct, x, y, z) and in
a rotating geodesic coordinate
system (cT, X, Y, Z)
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Let us now again investigate what comoving observers measure. For the sake of concrete-
ness, we imagine a set of rotatingobservers populating the circle betweenO1 andO2 undergoing
exactly the same motions as O1 and O2. The hypothesis of locality allows us to construct an
infinite sequence of momentarily comoving inertial observers tangential to particles on the arc
between the two circling observers. The Lorentz transformation between the original inertial
observers at rest and one of the comoving inertial observers gives infinitesimally

dl′ =
1√

1 − v2

c2

dl = γ dl , (40)

with v = rΩ0. While γ in the case of uniform linear acceleration was changing, it is constant
here. By integrating over the comoving inertial observers we get l′ = γl for the arclength
between the objects. The physical interpretation is the same as in the case of linear acceleration:
The Lorentz-Fitzgerald contracted arclength between our rotating objects is always l, hence the
actual arclength between them must be larger by the Lorentz γ-factor. Again, it is important
to recognize that O1 and O2 could be any two points in a rotating measuring device.
As in the case of linear acceleration, we now attempt an alternative description that is also

based on the hypothesis of locality and replace the infinite sequence of momentarily comoving
inertial frames by one continuouslymoving frame, for example, the geodesic coordinate system
around the worldline of one of the rotating observers.
Consider a rotating observer in the (ct, x, y, z) coordinate system as in Fig. 3. It turns out

that the natural orthonormal tetrad frame of such an observer is given by [4]

λµ
(0) = γ(1,−β sinϕ, β cosϕ, 0) , (41a)

λµ
(1) = (0, cosϕ, sinϕ, 0) , (41b)

λµ
(2) = γ(β,− sinϕ, cosϕ, 0) , (41c)

λµ
(3) = (0, 0, 0, 1) . (41d)

where ϕ is the azimuthal angle of the observer such that dϕ
dt = Ω0, β = rΩ0/c and γ is the

corresponding Lorentz factor. In this case, the components of the acceleration tensor (6) turn
out to be �a/c = (−βγ2Ω0, 0, 0) corresponding to the centripetal acceleration and the rotation
�Ω = (0, 0, γ2Ω0) of the spatial frame with frequency γ2Ω0 about the nonrotating triad that
represents ideal gyroscope directions [4]. To determine the proper acceleration length in this

case, we note that I = γ2Ω2
0

c2 and I∗ = 0. Thus L = c
γΩ0
, where γΩ0 = dϕ

dτ is the proper
rotation frequency of the observer.
Let us nowconstruct a geodesic coordinate systembasedon the tetrad frame (41) for observer

O1, i.e. we set ϕ = ϕ1 = Ω0t in (41). In Eq. (7), the worldline x̄µ(τ) of O1 is therefore given
in (ct, x, y, z) coordinates by O1 : (ct, r cosϕ1, r sinϕ1, 0), where t = γτ and ϕ1 = γΩ0τ .
Hence Eq. (7) implies that the rotating geodesic coordinate system (cT,X, Y, Z) is related to
the original inertial coordinates (ct, x, y, z) by (compare Fig. 3)

ct = γ(cT + βY ), x = (X + r) cos(γΩ0T ) − γY sin(γΩ0T ),

y = γY cos(γΩ0T ) + (X + r) sin(γΩ0T ), Z = z . (42)

Consider now an observer O : (ct, r cosϕ, r sinϕ, 0) on the arc between O1 and O2 at a
given time t with ϕ = Ω0t + φ such that the fixed angle φ could range from φ = 0 at O1 to
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φ = Φ atO2. It follows from the coordinate transformation (42) that in the geodesic coordinate
system O : (cT,X, Y, 0), where

X + r = r cosχ , Y = γ−1r sinχ . (43)

Hereχ is an angle defined byχ = ϕ−γΩ0T ; therefore, usingϕ = Ω0t+φ and t = γT+γβ Y/c
we find

χ − β2 sinχ = φ . (44)

It follows that in the geodesic coordinate system, O lies on an ellipse

(X + r)2

r2 +
Y 2

r2(1 − β2)
= 1 (45)

with semimajor axis r, semiminor axis γ−1r and eccentricity β = rΩ0/c as depicted in Fig. 4.
This figure should be compared and contrasted with Fig. 3. The ellipse can be thought of as
the circle of radius r that is Lorentz-Fitzgerald contracted along the direction of motion (i.e.
the Y -axis). The angle χ is similar to the eccentric anomaly in Keplerian motion and ranges
from χ = 0 at O1 to χ = ∆ at O2, i.e.

∆ − β2 sin ∆ = Φ (46)

by Eq. (44). It is interesting to note that Eq. (44) is similar to the Kepler equation for elliptical
motion in Newtonian gravity, except that in the Kepler equation the eccentricity β takes the
place of β2 in (44). Moreover, for a given angle φ, there is a unique angle χ for 0 ≤ β2 < 1.
In the rotating geodesic coordinate system established around O1, the distance from O1 to

O2 along the elliptical arc is D,

D = r

∆∫
0

√
1 − β2 cos2 χdχ , (47)

Fig. 4 The observersO1 andO are
depicted here from the standpoint
of the geodesic coordinate system
established around the worldline of
O1. The ellipse is given byEq. (45)
and O would range from O1 at
χ = 0 up to O2 at χ = ∆, where
∆ − β2 sin∆ = Φ. The length
of the elliptical arc from O1 to O2

is given by D in Eq. (47). This
is naturally related to elliptic inte-
grals; that is, D = r[E(π

2 , β) −
E(π

2 − ∆, β)], where E(ϕ, k) =
ϕ∫

0

√
1 − k2 sin2 α dα is the ellip-

tic integral of the second kind
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which is in general different from l′ = γrΦ. For instance, for a fixed Φ, l′ → ∞ as β → 1,
while D → r(1 − cos ∆) in this limit so that D/l′ → 0. Moreover, D is a monotonically
increasing function of Φ for fixed β.
On the other hand, let us fixΦ at π and note that whenΦ = π,∆ = π as well from Eq. (46);

then, the half circumference of the ellipse is given by

D = πr

[
1 −

(
1
2

)2

β2 −
(

1 · 3
2 · 4

)2
β4

3
−
(

1 · 3 · 5
2 · 4 · 6

)2
β6

5
− O(β8)

]
, (48)

so that as β goes from 0 → 1, the corresponding D decreases from πr → 2r and D/l′ goes
from 1 → 0. To understand this variation intuitively, we note that βγ = r/L. That is,

l′

L = βΦ (49)

in the case under consideration here with 0 ≤ Φ < 2π. Thus, when the circular orbit is much
smaller than the acceleration length of the observer, βγ = r/L 	 1, expanding Eq. (47) in
powers of β2 	 1 we find that

D

l′
= 1 − 3

4
β2
(

1 +
sin 2Φ − 8 sin Φ

6Φ

)
+ O(β4) , (50)

where Φ = l
r . When the radius of the circular orbit is much smaller than the acceleration

length of the observer, D ≈ l′; however, the deviation of D
l′ from unity cannot be neglected

for β → 1.
If the geodesic coordinate system is established along the worldline of the observer O2

instead, then the arclength from O2 to O1 in the accelerated system turns out to be D as well
due to the symmetry of the uniformly rotating configuration depicted in Fig. 3.
Considering our results, it is necessary to recognize that there is no unique answer for event

distances when the observer is accelerated. We do not have a theory that gives us the precise
distance on the Earth between Cologne (Germany) and Columbia (Missouri), for example,
since the Earth rotates. Of course, ε = βγΦ is typically very small, since it compares l with
the very large acceleration length L. For instance, for antipodal points along the equator,
Eq. (50) implies that the difference between D and l′ amounts to only a distance of the order
of 10−3 cm.

6 Discussion

The main purpose of this work has been to demonstrate that within the confines of classical,
i.e. nonquantum, physics there exist basic limitations on length measurement by accelerated
observers inMinkowski spacetime that follow from the hypothesis of locality. Indeed, realistic
accelerated coordinate systems suffer from limitations that are far more severe than those
imposed by the requirement of the admissibility of such coordinates. That is, all distances in
accelerated systemsmust in fact be negligibly small compared to the characteristic acceleration
lengths of the observer.
Discussions of the quantum limitations of spacetime measurements are contained in [3] and

[10]. Difficulties with the measurement of spatial distance in the general theory of relativity
are treated in [11].
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